chứng minh f(x) = 2x^4 + 3x^2 + 4 vô nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x)=-8x^3+6x^3+2x^3+3x^4-3x^4+4x^2-2020+2025
=4x^2+5>=5>0 với mọi x
=>P(x) không có nghiệm
Ta có:
\(VT=\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(pt\Leftrightarrow\left(x^2+1\right)\left(x^2-x+1\right)\left(x^2-x+2\right)=0\)
Mà:
\(x^2+1>0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(x^2-x+2=\left(x-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vậy pt vô nghiệm
\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)
\(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
= \(\left(x^2+2\right)\left(x^2+x+1\right)\)
Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)
Suy ra , đa thức trên vô nghiệm
Giả sử x=a là nghiệm nguyên f(a)
\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)
Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)
Mà \(-4a^4+4a^3-2a^2⋮2\)
\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)
\(\Rightarrow1⋮2\left(VL\right)\)
Vậy không tồn tại nghiệm nguyên của f(x)
1. x\(^4\)-x\(^3\)+2x\(^2\)-x+1=0
\(\Leftrightarrow\)(x^4-x^3+x^2) +(x^2-x+1)=0
\(\Leftrightarrow\)x^2(x^2-x+1) +(x^2-x+1)=0
\(\Leftrightarrow\)(x^2-x+1)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x^2-x+1/4)+3/4\(]\)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x-1/2)\(^2\)+3/4\(]\)(x^2+1)=0
VÌ (x-1/2)\(^2\)+3/4>0\(\forall\)x
x^2+1>0\(\forall\)x
\(\Rightarrow\)Phương trình đã cho vô nghiệm
1)x^4 - x^3 + 2x^2 - x + 1 = 0
(x^4 + 2x^2 +1) - (x^3+x)= 0
x^4 + 2x^2 + 1 = x^3 - x
(x^2 + 1)^2 = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
x^2+1 = x (vô lí)
==> PT vô nghiệm
\(f\left(x\right)=2x^4+3x^2+4=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
Ta có \(2t^2+3t+4=0\)
Do \(2t^2\ge0;3t\ge0;4>0\)
Nên đa thức ko có nghiệm