Cho các số thực a,b,c thỏa mãn điều kiện : \(a^2+b^2+c^2=3\)
CMR : \(ab+bc+ca+a+b+c\le6\)
Bài này mình nhặt được trên fb
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng AM-GM có:
\(2a^2+2b^2\ge4ab\)
\(8b^2+\dfrac{1}{2}c^2\ge4bc\)
\(8a^2+\dfrac{1}{2}c^2\ge4ac\)
Cộng vế với vế \(\Rightarrow VT\ge4\left(ab+bc+ac\right)=4\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}ab+bc+ac=1\\a=b=\dfrac{c}{4}\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{1}{3};c=\dfrac{4}{3}\)
Với mọi số thực a;b;c ta luôn có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (1)
Tương tự: \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+3\ge2a+2b+2c\) (2)
Cộng vế với vế (1) và (2)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca+a+b+c\le6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Bài 2 :
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
<=> a^2 + b^2 + c^2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a^2 + b^2 + c^2 = ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 = 0
<=> a = b = c
1.
\(\Leftrightarrow2a^2+2b^2+18=2ab+6a+6b\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-6a+9\right)+\left(b^2-6b+9\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-3\right)^2+\left(b-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\a-3=0\\b-3=0\end{matrix}\right.\) \(\Leftrightarrow a=b=3\)
2.
\(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Ta có
\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)
\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)
\(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)
\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)
\(=>=3+\frac{3+3}{2}=6\)
=> dpcm
cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm
(a - b)^2 = a^2 - 2ab + b^2 > 0
(b - c)^2 = b^2 - 2bc + c^2 > 0
(c - a)^2 = c^2 - 2ac + a^2 > 0
=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac
=> 6 > 2ab + 2bc + 2ac
=> 3 > ab + bc + ac (1)
(a - 1)^2 = a^2 - 2a + 1 > 0
(b - 1)^2 = b^2 - 2b + 1 > 0
(c - 1)^2 = c^2 - 2c + 1 > 0
=> a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c
=> 6 > 2a + 2b + 2c
=> 3 > a + b + c và (1)
=> 6 > ab + ac + bc + a + b + c