K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

A = 3n - 6061/x - 2020

để A nguyên

=> 3x - 6061 chia hết cho x - 2020

=> 3x - 6060 - 1 chia hết cho x - 2020

=> 1 chia hết cho x - 2020

=> x - 2020 thuộc {-1; 1}

=> x - 2020 thuộc {2019; 2021}

23 tháng 6 2020

Trả lời :

\(A=\frac{3n-6061}{n-2020}\)

\(A=\frac{3\left(n-2020\right)-1}{n-2020}\)

\(A=3-\frac{1}{n-2020}\)

Để A\(\inℤ\)=> \(\frac{1}{n-2020}\inℤ\)

\(\Rightarrow1⋮n-2020\)

\(\Rightarrow\orbr{\begin{cases}n=2021\\n=2019\end{cases}}\)

23 tháng 6 2020

Bài làm:

Ta có: \(A=\frac{3n-6061}{n-2020}=\frac{\left(3n-6060\right)-1}{n-2020}=\frac{3\left(n-2020\right)}{n-2020}-\frac{1}{n-2020}=3-\frac{1}{n-2020}\)

Ta có 3 là 1 số nguyên nên để A là 1 số nguyên

\(\Rightarrow\frac{1}{n-2020}\inℤ\Rightarrow1⋮\left(n-2020\right)\)

\(\Rightarrow n-2020\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(\Rightarrow n\in\left\{2019;2021\right\}\)

Vậy với n = 2019 hoặc n = 2021 thì A có giá trị là 1 số nguyên

Học tốt!!!!

Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}

:D

26 tháng 2 2017

Do A có giá trị nguyên

\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)

Mà  \(n-1⋮n-1\)

\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)

Từ (1) và (2)

\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)

\(\Rightarrow3n+2-3n+3⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)

Xét \(n-1=-1\Rightarrow n=-4\)

\(n-1=-5\Rightarrow n=0\)

\(n-1=5\Rightarrow n=6\)

\(n-1=1\Rightarrow n=2\)

Vậy ...

26 tháng 2 2017

A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)

Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}

Ta có: n - 1 = 1 => n = 2

          n - 1 = -1 => n = 0

          n - 1 = 5 => n = 6

          n - 1 = -5 => n = -4

Vậy n = {2;0;6;-4}

NM
10 tháng 5 2021

Ta có 

\(A=\frac{3n+4}{n-1}=3+\frac{7}{n-1}\)là số nguyên khi n-1 là ước của 7 hay

\(n-1\in\left\{\pm1,\pm7\right\}\Rightarrow n\in\left\{-6,0,2,8\right\}\)

10 tháng 5 2021

Để A có  giá trị nguyên

<=> 3n + 4 ⋮  n - 1

=> ( 3n - 3 ) + 7 ⋮  n - 1

=> 3 . ( n - 1 ) + 7 ⋮  n - 1

vì 3.(n-1) + 7 chia hết cho n-1 và 3.(n-1) chia hết cho n-1 nên 7 chia hết cho n-1 

=> n - 1 ∈  Ư(7) = { - 7 ; -1 ; 1 ; 7 }

Ta có bảng sau :

n-11-1-77
n20-68

mọi giá trị n đều thuộc z (chọn)

 Vậy x  ∈ { - 6 ; 0 ; 2 ; 8 }

2 tháng 8 2015

=> 3n + 2 là bội của n - 1 hay 3n + 2 phải chia hết cho n - 1

=> 3 là bội của n - 1 hay 3 phải chia hết cho n - 1

\(\RightarrowƯ_3=\left\{+-1;+-3\right\}\)

=>     n - 1 = 1                   =>     n = 1 + 1 = 2

         n - 1 = -1                  =>     n = -1 + 1 = 0

         n - 1 = 3                   =>     n = 3 + 1 = 4

         n - 1 = -3                  =>     n = -3 + 1 = -2

 

=>               \(n\in\left\{-2;0;2;4\right\}\)

26 tháng 12 2014

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1=-1 => n=0
  • Nếu n-1=1 => n=2
  • Nếu n-1=5 => n=6

Vậy n thuộc {-4;0;2;6}

25 tháng 7 2016

Để (3n+2)/(n-1) là số nguyên

=> 3n+2 chia hết cho n-1

=> (3n-3)+3+2 chia hết cho n-1

=>3(n-1)+5 chia hết cho n-1

Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1

=> n-1 thuộc Ư(5)={-5;-1;1;5}

  • Nếu n-1=-5 => n=-4
  • Nếu n-1=-1 => n=0
  • Nếu n-1=1 => n=2
  • Nếu n-1=5 => n=6

Vậy n thuộc {-4;0;2;6}

17 tháng 2 2016

Để \(\frac{3n+2}{n-1}\)là số nguyên thì 3n + 2 phải chia hết cho n - 1

=> 3n - 3 + 5 chia hết cho n - 1

=> 3(n - 1) + 5 chia hết cho n - 1

=> 5 chia hết cho n - 1 (Vì 3(n - 1) chia hết cho n - 1)

=> n - 1 thuộc {-1; 1; -5; 5}

=> n thuộc {0; 2; -4; 6}

Vậy...

17 tháng 2 2016

\(A=\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)

A E Z<=>5/n-1 E Z<=>5 chia hết chia hết cho n-1

=>n-1 E Ư(5)={-5;-1;1;5]

=>n E {-4;0;2;6}

vậy....

21 tháng 7 2016

Để phân số trên thỏa mãn điều kiện thì:

3n+4 chia hết cho n-1

3n+4=3n-3+7

=3.(n-1)+7

Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1

n-1 thuộc +-1;+-7

Thử các trường hợp ra,ta có:

n thuộc:0;2;8;-6.

Chúc em học tốt^^

21 tháng 7 2016

Để phân số trên thỏa mãn điều kiện thì:

3n+4 chia hết cho n-1

3n+4=3n-3+7

=3.(n-1)+7

Vì 3.(n-1) chia hết cho n-1 nên 7 phải chia hết cho n-1

n-1 thuộc +-1;+-7

Thử các trường hợp ra,ta có:

n thuộc:0;2;8;-6.

11 tháng 4 2019

ĐKXĐ : \(x\ne1\)

\(A=\frac{3n+2}{n-1}\)nguyên thì :

\(\left(3n+2\right)⋮\left(n-1\right)\)

\(\left(3n-3+5\right)⋮\left(n-1\right)\)

\(3\left(n-1\right)+5⋮\left(n-1\right)\)

Ta có : \(3\left(n-1\right)⋮\left(n-1\right)\)

\(\Rightarrow5⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)( thỏa mãn ĐKXĐ )

Vậy....

11 tháng 4 2019

ĐKXĐ: n-1 khác 0=>n khác 1

ta có đề\(\Leftrightarrow\frac{3n-3+5}{n-1}\Leftrightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\)

\(\Leftrightarrow3+\frac{5}{n-1}\) vậy đề A là số nguyên => n-1 thuộc Ư(5)=> để A là số nguyên thì n-1={-1,-5,1,5}

bạn xét 4 trường hợp r giải là ra nha

k cho mình nha bạn