K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2020

\(x^2+y^2\ge0\text{ với mọi x;y là số thực mà:}x^2+y^2=0\Rightarrow x^2=y^2=0\Leftrightarrow x=y=0\)

do đó biểu thức N có giá trị bằng 0

\(M=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

\(=\left(x^2+y^2\right)\left(2x^2+y^2\right)+y^2\)

\(=2x^2+2y^2=2\)

\(=2x^4+2x^2y^2+x^2y^2+y^4+y^2\\ =2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\\ =2x^2.1+y^2+y^2=2\left(x^2+y^2\right)=2.1=2\)

8 tháng 5 2022

`M = 2x^4 + 3x^2y^2 + y^4 + y^2`

`M = 2x^4 + 2x^2y^2 + x^2y^2 + y^4 + y^2`

`M = 2x^2( x^2 + y^2 ) + ( x^2 + y^2 )y^2 + y^2`

Thay `x^2+y^2=1` vào `M` ta có `:`

`M = 2x^2 . 1 + y^2 . 1 + y^2`

`M = 2x^2 + 2y^2`

`M = 2( x^2 + y^2 )`

`M = 2.1`

`M=2` 

8 tháng 5 2022

Cảm ơn bạn

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 1:

$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$ 

$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$

$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2021

Bài 2:
$8x^3-32y-32x^2y+8x=0$

$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$

$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$

$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)

$\Leftrightarrow x=4y$

Khi đó:

$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$

25 tháng 8 2021

a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)

b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)

a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)

\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)

=0

b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

6 tháng 9 2019

Xét hàm  trên  ℝ  và đi đến kết quả 

27 tháng 4 2017

Đáp án A

 

10 tháng 10 2018

M=x^2*(-1)-y^2(x-y)+x^2-y^2+100

=-x^2+y^2+x^2-y^2+100

=100

24 tháng 3 2022

\(M=x^2\left(x-y\right)-y^2\left(x-y\right)+x^2-y^2+100\)

\(=\left(x-y\right)\left(x^2-y^2\right)+x^2-y^2+100\)

\(=\left(x^2-y^2\right)\left(x-y+1\right)+100\)

\(=\left(x^2-y^2\right).0+100\)

\(=100\)

Vậy \(M=100\)

14 tháng 8 2017

Chọn đáp án A