K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

Đặt \(5x^2+3y^2+4xy-2x+8y+8=A\)

ta có \(5x^2+3y^2+4xy-2x+8y+8< 0\)

<=>\(\left(2x+y\right)^2+\left(x-1\right)^2+2\left(y+2\right)^2< 1\)

vì x,y là số nguyên nên A cũng nguyên 

mà A<1 nên A=0 (vì A là toonngr của 3 số chính phương)

=>\(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\)

bạn tự giải nha

11 tháng 4 2022

sai sai ở đâu đấy anh bạn, đây là phương trình chứ đâu có liên quan đến bất đẳng thức đâu.

26 tháng 7 2015

có khùng hk vậy hùng tự đăng tự giải ls

 

30 tháng 6 2015

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

29 tháng 8 2023

Đặt x = -2y + k (k \(\inℤ\))

Ta có x2 + 8y2 + 4xy - 2x - 4y = 4

<=> (-2y + k)2 + 8y2 + 4y(-2y + k) - 2(-2y + k) - 4y = 4

<=> k2 + 4y2 - 2k = 4

<=> (k - 1)2 + (2y)2 = 5 (*) 

Dễ thấy (2y)2 \(⋮4\) (**)

Với y,k \(\inℤ\) kết hợp (*) ; (**) ta được 

\(\left\{{}\begin{matrix}\left(k-1\right)^2=1\\\left(2y\right)^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}k=0\\k=2\end{matrix}\right.\\y=\pm1\end{matrix}\right.\) 

Vậy (k,y) = (0;1) ; (0;-1) ; (2;1) ; (2;-1) 

mà x = k - 2y nên các cặp (x;y) thỏa là (-2;1) ; (2;-1) ; (0;1) ; (4;-1)  

10 tháng 1 2021

\(\Leftrightarrow x^2+4y^2+4xy-2\left(x+2y\right)+1=5-4y^2\)

\(\Leftrightarrow\left(x+2y+1\right)^2=5-4y^2\)

TH1 : \(4y^2=0\)

Pt \(\Leftrightarrow\left(x+2y+1\right)^2=5\)Mà 5 không là số chính phương.

=> Không có số nguyên x nào thỏa mãn.

TH2 : \(4y^2>0\)

Do \(\left(x+2y+1\right)^2\ge0\Rightarrow5\ge4y^2\)

Mà y nguyên

=> \(4y^{2}=4\)

=> y ∈ {1 ; -1}

Với y = 1

=> x + 3 = 1

=> x = -2 (tm)Với y = -1

=> x - 1 = 1

=> x = 2 (tm)Vậy..

20 tháng 8 2021

từ trường hợp y=1 của bạn có thể giải thành 2 trường hợp của x

Thay y=1 vào \(\left(x+2y-1\right)^2=5-4y^2\)được

\(\left(x+2-1\right)^2=5-4\Leftrightarrow\left(x-1\right)^2=1\Leftrightarrow\left(x-1\right)^2-1=0\Leftrightarrow x\left(x-2\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

*Trường hợp y=-1

\(\left(x-2-1\right)^2=5-4\Leftrightarrow\left(x-3\right)^2=1\Leftrightarrow\left(x-3\right)^2-1=0\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)\(\Rightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

13 tháng 10 2021
Lấy 1 -1 2
15 tháng 12 2016

3x+ 3y+4xy+2x - 2y +2 = 0

<=> (2x2 + 4xy + 2y2) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0

<=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0

<=> x = - y = - 1 

Thế vô ta được

(x+y)2010+ (x+2)2011+(y-1)2012

= (- 1 + 1)2010 + (- 1 + 2)2011 + (1 - 1)2012 = 1