Cho tam giác ABC vuông tại A có AB =3cm ; AC=4cm
a) Tính độ dài BC
b)gọi M là trung điểm AC . Trên tia đối tia MB lấy điểm P sao cho MB=MP . Chứng minh CD vuông góc với AD
c) Chứng minh 2BM=MB+MC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
1,a,
ta có bc^2=ab^2+ac^2=4^2+3^2=25=>bc=5 cm
b,
xét tam giác abc và tam giác adc có:
ac:cạnh chung
^b=^d
ab=ad
=>tam giác abc=tam giác adc(cgc)
=>cd=cb
xét tam giác bae và tam giác dae có:
ae:cạnh chung
^bae=^dae
da=db
=>tam giác bae=tam giác dae(cgc)
=>be=de
xét tam giác bec và tam gíac dec có
be=de(cmt)
cd=cb(cmt)
ce chung
=>tam giác bec=tam giác dec(ccc)
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Áp dụng định lý Py-ta-go đối với ▲MPQ vuông tại M ta có:
\(MQ^2=PQ^2-MP^2\)
\(\Rightarrow MQ=10^2-6^2=100-36=64\)
\(\Rightarrow MQ=8\left(cm\right)\)
Xét ▲ABC và ▲MPQ ta có :
\(\frac{AB}{MP}=\frac{AC}{MQ}=\frac{1}{2}\left(\frac{3}{6}=\frac{4}{8}\right)\)
<A=<M=90
Do đó hai tam giác đồng dạng
- Đâu cần phiền phức vậy! Có hai góc A và M cùng =90 độ lập tỉ số 2 cặp cạnh đã cho độ dài => 2 tỉ số bằng nhau => Tam giác đồng dạng trường hợp c.g.c .
\(\sin\widehat{B}=\sin60^0=\dfrac{\sqrt{3}}{2}\)
\(\cos\widehat{B}=\dfrac{1}{2}\)
\(\tan\widehat{B}=\sqrt{3}\)
\(\cot\widehat{B}=\dfrac{\sqrt{3}}{3}\)
Giải chi tết ra được không ạ ? Chứ em không hiểu lắm :((
a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(MP=\sqrt{10^2-6^2}=8\left(cm\right)\)
Xet ΔABC vuông tại A và ΔMNP vuông tại M co
AB/MN=AC/MP
=>ΔABC đồng dạng vơi ΔMNP
b: ΔABC đồng dạng vơi ΔMNP
=>goc A=góc M; góc B=góc N; gócC=góc P
A B C D M
Bài làm:
a) Vì tam giác ABC vuông tại A nên áp dụng định lý Pytago ta có:
\(BC^2=AB^2+AC^2=3^2+4^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)
b) \(\Delta MAB=\Delta MCD\left(c.g.c\right)\)
vì: \(MA=MC\)(giả thiết)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
\(MB=MD\)(giả thiết)
\(\Rightarrow\widehat{MCD}=\widehat{MAB}=90^0\)
=> \(CD\perp AD\)
Còn phần c mình nghĩ bạn nên sửa lại đề nhé!