49/005
Tính \(\int_1^2\frac{x}{3x+\sqrt{9x^2-1}}dx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Đặt \(\sqrt{1-x^2}=u\Rightarrow x^2=1-u^2\Rightarrow xdx=-udu\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^0_1\left(1-u^2\right).u.\left(-udu\right)=\int\limits^1_0\left(u^2-u^4\right)du=\left(\dfrac{1}{3}u^3-\dfrac{1}{5}u^5\right)|^1_0\)
\(=\dfrac{2}{15}\)
b.
\(\int\limits^2_1\dfrac{dx}{x^2-2x+2}=\int\limits^2_1\dfrac{dx}{\left(x-1\right)^2+1}\)
Đặt \(x-1=tanu\Rightarrow dx=\dfrac{1}{cos^2u}du\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=0\\x=2\Rightarrow u=\dfrac{\pi}{4}\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{1}{tan^2u+1}.\dfrac{1}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0\dfrac{cos^2u}{cos^2u}du=\int\limits^{\dfrac{\pi}{4}}_0du\)
\(=u|^{\dfrac{\pi}{4}}_0=\dfrac{\pi}{4}\)
\(I_1=3\int_1^2x^2dx+\int_1^2\cos xdx+\int_1^2\frac{dx}{x}=x^3\)\(|^2 _1\)+\(\sin x\)\(|^2_1\) +\(\ln\left|x\right|\)\(|^2_1\)
\(=\left(8-1\right)+\left(\sin2-\sin1\right)+\left(\ln2-\ln1\right)\)
\(=7+\sin2-\sin1+\ln2\)
b) \(I_2=4\int_1^2\frac{dx}{x}-5\int_1^2x^4dx+2\int_1^2\sqrt{x}dx\)
\(=4\left(\ln2-\ln1\right)-\left(2^5-1^5\right)+\frac{4}{3}\left(2\sqrt{2}-1\sqrt{1}\right)\)
\(=4\ln2+\frac{8\sqrt{2}}{3}-32\frac{1}{3}\)
a.
\(\int\limits^{\sqrt{7}}_0\dfrac{x^3}{\sqrt[3]{x^2+1}}dx\)
Đặt \(\sqrt[3]{x^2+1}=u\Rightarrow x^2+1=u^3\Rightarrow x^2=u^3-1\Rightarrow x.dx=\dfrac{3}{2}u^2du\)
\(\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=\sqrt{7}\Rightarrow u=2\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^2_1\dfrac{\left(u^3-1\right).\dfrac{3}{2}u^2du}{u}=\int\limits^2_1\dfrac{3}{2}\left(u^4-u\right)du=\dfrac{3}{2}\left(\dfrac{1}{5}u^5-\dfrac{1}{2}u^2\right)|^2_1\)
\(=\dfrac{141}{20}\)
b.
Đặt \(\sqrt{x+3}=u\Rightarrow x=u^2-3\Rightarrow dx=2udu\)
\(\left\{{}\begin{matrix}x=1\Rightarrow u=2\\x=6\Rightarrow u=3\end{matrix}\right.\)
\(\Rightarrow I=\int\limits^3_2\dfrac{u+1}{u^2-3+2}.2udu=\int\limits^3_2\dfrac{2udu}{u-1}=\int\limits^3_22\left(1+\dfrac{1}{u-1}\right)du\)
\(=2\left(u+ln\left|u-1\right|\right)|^3_2=2\left(1+ln2\right)\)
Câu này dài quá! Mình k ghi ra dc! Đầu tiên đổi biến số sau đó tích phân từng phần 3 lần :3 :3
\(\dfrac{1}{\left(x+1\right)\sqrt{x}+x\sqrt{x+1}}=\dfrac{\left(x+1\right)\sqrt{x}-x\sqrt{x+1}}{\left(x+1\right)^2x-x^2\left(x+1\right)}=\dfrac{\left(x+1\right)\sqrt{x}-x\sqrt{x+1}}{x\left(x+1\right)}\)
\(=\dfrac{\sqrt{x}}{x}-\dfrac{\sqrt{x+1}}{x+1}=x^{-\dfrac{1}{2}}-\left(x+1\right)^{-\dfrac{1}{2}}\)
Do đó:
\(I=\int\limits^2_1\left[x^{-\dfrac{1}{2}}-\left(x+1\right)^{-\dfrac{1}{2}}\right]dx=\left(2\sqrt{x}-2\sqrt{x+1}\right)|^2_1=...\)
Câu a)
\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)
Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)
Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)
Vậy :
\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)
\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)
Câu b)
\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)
\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)
Do đó:
\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)
Câu c)
\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)
\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)
\(=\frac{x^2}{2}+c+\ln ^2x\)
\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)
Câu d)
\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)
\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)
\(=1+\ln 3\)
Nhìn đề dữ dội y hệt cr của tui z :( Để làm từ từ
Lập bảng xét dấu cho \(\left|x^2-1\right|\) trên đoạn \(\left[-2;2\right]\)
x | -2 | -1 | 1 | 2 |
\(x^2-1\) | 0 | 0 |
\(\left(-2;-1\right):+\)
\(\left(-1;1\right):-\)
\(\left(1;2\right):+\)
\(\Rightarrow I=\int\limits^{-1}_{-2}\left|x^2-1\right|dx+\int\limits^1_{-1}\left|x^2-1\right|dx+\int\limits^2_1\left|x^2-1\right|dx\)
\(=\int\limits^{-1}_{-2}\left(x^2-1\right)dx-\int\limits^1_{-1}\left(x^2-1\right)dx+\int\limits^2_1\left(x^2-1\right)dx\)
\(=\left(\dfrac{x^3}{3}-x\right)|^{-1}_{-2}-\left(\dfrac{x^3}{3}-x\right)|^1_{-1}+\left(\dfrac{x^3}{3}-x\right)|^2_1\)
Bạn tự thay cận vô tính nhé :), hiện mình ko cầm theo máy tính
2/ \(I=\int\limits^e_1x^{\dfrac{1}{2}}.lnx.dx\)
\(\left\{{}\begin{matrix}u=lnx\\dv=x^{\dfrac{1}{2}}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{2}{3}.x^{\dfrac{3}{2}}\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}\int\limits^e_1x^{\dfrac{1}{2}}.dx\)
\(=\dfrac{2}{3}.x^{\dfrac{3}{2}}.lnx|^e_1-\dfrac{2}{3}.\dfrac{2}{3}.x^{\dfrac{3}{2}}|^e_1=...\)
\(I=\int\limits^2_1\frac{x\left(3x-\sqrt{9x^2-1}\right)}{\left(3x+\sqrt{9x^2-1}\right)\left(3x-\sqrt{9x^2-1}\right)}dx=\int\limits^2_1x\left(3x-\sqrt{9x^2-1}\right)dx\)
\(=\int\limits^2_13x^2dx-\frac{1}{18}\int\limits^2_1\sqrt{9x^2-1}.d\left(9x^2-1\right)\)
\(=x^3|^2_1-\frac{1}{27}\sqrt{\left(9x^2-1\right)^3}|^2_1=7-\frac{1}{27}\left(35\sqrt{35}-16\sqrt{2}\right)\)