K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2021

undefinedundefined

a) Xét ΔOBH và ΔODA có 

OB=OD(gt)

\(\widehat{BOH}=\widehat{DOA}\)(hai góc đối đỉnh)

OH=OA(gt)

Do đó: ΔOBH=ΔODA(c-g-c)

Suy ra: \(\widehat{OHB}=\widehat{OAD}\)(hai góc tương ứng)

mà \(\widehat{OHB}=90^0\)(gt)

nên \(\widehat{OAD}=90^0\)

hay AH\(\perp\)AD(đpcm)

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB //...
Đọc tiếp

\(Bài 1. Cho góc xOy, có Ot là tia phân giác. Lấy điểm A trên tia Ox, điểm B trên tia Oy sao cho OA = OB. Vẽ đoạn thẳng AB cắt Ot tại M. Chứng minh a) OAM = OBM; b) AM = BM; OM  AB c) OM là đường trung trực của AB d) Trên tia Ot lấy điểm N . Chứng minh NA = NB Bài 2. Cho ABC vuông tại A, trên tia đối của tia CA lấy điểm K sao cho CK = CA, từ K kẻ KE vuông góc với đường thẳng AC. Chứng mỉnhằng: a) AB // KE b)  ABC =  KEC ; BC = CE Bài 3. Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C. Trên tia Oy lấy hai điểm B,D sao cho OA = OB, AC = BD. a) Chứng minh: AD = BC. b) Gọi E là giao điểm AD và BC. Chứng minh: EAC = EBD c) Chứng minh: OE là phân giác của góc xOy, OE CD Bài 4. Cho ABC coù BÂ=900, gọi M là trung điểm của BC. Trên tia đối của tia AM lấy điểm E sao cho ME = MA. a) Tính  BCE b) Chứng minh BE // AC. Bài 5. Cho ABC, lấy điểm D thuộc cạnh BC ( D không trùng với B,C). Gọi Mlà trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME= MB, trên tia đối của tia MC lấy điểm F sao cho MF= MC. Chứng minh rằng: a) AME = DMB; AE // BC b) Ba điểm E, A, F thẳng hàng c) BF // CE Bài 6: Cho có  B =  C , kẻ AH  BC, H  BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh: a) AB = AC b) ABD = ACE c) ACD = ABE d) AH là tia phân giác của góc DAE e) Kẻ BK  AD, CI  AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm. \)

2
27 tháng 8 2017

Tự mà làm lấy

17 tháng 3 2022

chịu. nhình rối hết cả mắt @-@

5 tháng 3 2022

a) Xét \(\Delta ABH\) và \(\Delta ACH:\)

AH chung.

BH = CH (H là trung điểm của BC).

AB = AC (\(\Delta ABC\) đều).

\(\Rightarrow\Delta ABH=\Delta ACH\left(c-c-c\right).\)

b) Ta có: \(\Delta ABC\) đều (gt). 

\(\Rightarrow\) AB = AC = BC = 8cm.

Ta có: BH = CH = \(\dfrac{1}{2}BC\) (H là trung điểm của BC).

Mà BC = \(8cm\left(gt\right).\)

\(\Rightarrow BH=CH=\dfrac{1}{2}.8=4\left(cm\right).\)

Xét \(\Delta AHB\) vuông tại H:

\(AB^2=AH^2+BH^2\left(Pytago\right).\)

Mà AB = \(8cm\left(cmt\right).\)

     BH = 4cm (cmt).

\(\Rightarrow AH=4\sqrt{3}.\)

c) Xét \(\Delta OBC:\)

OH là đường cao \(\left(OH\perp BC\right).\)

OH là đường trung tuyến (H là trung điểm của BC).

\(\Rightarrow\Delta OBC\) là tam giác cân.

\(\Rightarrow OB=OC.\)

5 tháng 3 2022

a) Xét ΔABHΔABH và ΔACH:ΔACH:

AH chung.

BH = CH (H là trung điểm của BC).

AB = AC (ΔABCΔABC đều).

⇒ΔABH=ΔACH(c−c−c).⇒ΔABH=ΔACH(c−c−c).

b) Ta có: ΔABCΔABC đều (gt). 

⇒⇒ AB = AC = BC = 8cm.

Ta có: BH = CH = 12BC12BC (H là trung điểm của BC).

Mà BC = 8cm(gt).8cm(gt).

⇒BH=CH=12.8=4(cm).⇒BH=CH=12.8=4(cm).

Xét ΔAHBΔAHB vuông tại H:

AB2=AH2+BH2(Pytago).AB2=AH2+BH2(Pytago).

Mà AB = 8cm(cmt).8cm(cmt).

     BH = 4cm (cmt).

⇒AH=4√3.⇒AH=43.

c) Xét ΔOBC:ΔOBC:

OH là đường cao (OH⊥BC).(OH⊥BC).

OH là đường trung tuyến (H là trung điểm của BC).

⇒ΔOBC⇒ΔOBC là tam giác cân.