K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C D M K H

Từ B kẻ BH // AC

Ta có: AB = BD, BH // AC

=> BH là đường trung bình của \(\Delta ADK\)

=> \(BH=\dfrac{1}{2}AK\) (tính chất đường trung bình của tam giác)

Xét \(\Delta BHM\)\(\Delta CKM\) có:

\(\widehat{KMC}=\widehat{BHM}\) (2 góc đối đỉnh)

CM = MB (M trung điểm CB)

\(\widehat{MBH}=\widehat{CKM}\) (KC // BH)

=> \(\Delta BHM=\Delta CKM\left(g.c.g\right)\)

=> KC = BH (2 cạnh tương ứng)

\(BH=\dfrac{1}{2}AK\) (cmt)

=> \(KC=\dfrac{1}{2}AK\)

\(\Rightarrow AK=2KC\left(đpcm\right)\)

20 tháng 8 2017

A B K C H M D

Từ B kẻ BH // AC

Ta có: AB = BD, BH // AC

=> BH là đường trung bình của \(\Delta ADK\)

=>BH=\(\dfrac{1}{2}AK\)(tính chất đường trung bình của tam giác)

Xét \(\Delta BHM\)\(\Delta CKM\) có :

\(\widehat{KMC}=\widehat{BMH}\) ( hai góc đối đỉnh )

CM=MB (M la ftrung điểm của CB)

\(\widehat{MBH}=\widehat{CKM}\) ( KC//BH )

=>\(\widehat{BHM}=\widehat{CKM}\)

=>KC = BH

mà BH=1/2 AK

=>\(KC=\dfrac{1}{2}AK\)

=>AK=2KC

=> đcpm

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

30 tháng 7 2019

B C D K A N M

+ Xét ∆AMN và ∆CKN có:

AN = NC (gt)

\(\widehat{ANM}=\widehat{CNK}\)( đối đỉnh)

NM = NK (gt)

=>∆AMN = ∆CKN (c-g-c)

+ Cm được ∆ANK = ∆CNM

=> Góc NAK = góc NCM ( tương ứng)

=> AK // MC ( so le trong =)

Vì∆AMN = ∆CKN => MA = KC và góc AMN = góc CKN

+ XÉt∆MNB và ∆KND có :

MN = KN(gt)

\(\widehat{BMN}=\widehat{DKN}\)

MB = KD ( vì MB = MA; MA = KC; KC = KD)

=> ∆MNB = ∆KND (c-g-c)  (1)

=> NB = ND

và góc MNB = góc KND mà M,N,K thẳng hàng

=> B,N,D thẳng hàng

Từ(1),(2) => N là trung điểm BD