K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2020

Bài làm:
Ta có: \(\left(x^2+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+4=0\\x+1=0\end{cases}}\)

Mà \(x^2+4\ge4>0\left(\forall x\right)\)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy x = -1 là nghiệm của đa thức trên

=> Điều cần chứng minh sai ạ!
 

17 tháng 3 2023

;))

 

2 tháng 4 2017

a)

  • Để P(y)=0

\(\Leftrightarrow3y-6=0\)

\(\Leftrightarrow3y=6\)

\(\Leftrightarrow y=2\)

Vậy P(y) có nghiệm là 2

  • Để M(x)=0

\(\Leftrightarrow x^2-4=0\)

\(\Leftrightarrow x^2=4\)

\(\Rightarrow x\in\){2;-2}

Vậy M(x) có nghiệm là 2 và -2

b)

Ta có:

\(x^4\ge0\)

\(\Rightarrow x^4+1\ge1>0\)

\(\Rightarrow Q\left(x\right)>0\)

\(\Rightarrow Q\left(x\right)\ne0\)

Vậy Q(x) vô nghiệm

29 tháng 5 2018

a) Ta có: P(x) = 3y + 6 có nghiệm khi

3y + 6 = 0

3y = -6

y = -2

Vậy đa thức P(y) có nghiệm là y = -2.

b) Q(y) = y4 + 2

Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y

Nên y4 + 2 có giá trị lớn hơn 0 với mọi y

Tức là Q(y) ≠ 0 với mọi y

Vậy Q(y) không có nghiệm.

AH
Akai Haruma
Giáo viên
19 tháng 2 2023

Lời giải:

$2M(x)=2x^4+2x^3+4x^2+2=x^4+(x^4+2x^3+x^2)+3x^2+2$
$=x^4+(x^2+x)^2+3x^2+2\geq 2>0$ với mọi $x$

$\Rightarrow M(x)>0$ với mọi $x$ 

$\Rightarrow$ đa thức $M(x)$ vô nghiệm.

13 tháng 9 2019

Ta có : \(x^2+2x+2=x^2+x+x+1+1=\left[x^2+x\right]+\left[x+1\right]+1\)

\(=x\left[x+1\right]+\left[x+1\right]+1\)

\(=\left[x+1\right]^2+1\ge1>0\forall x\)

Vậy đa thức trên ko có nghiệm

13 tháng 9 2019

Ta có: x2 + 2x + 2 = (x2 + 2x + 1) + 1 = (x + 1)2 + 1 \(\ge\)1 với mọi x

=> x2 + 2x + 2 ko có nghiệm nguyên

30 tháng 3 2019

Ta có 5x^2 luôn \(\ge\)0 với mọi x

         x^4 luôn  \(\ge\) 0 với mọi x

         1 luôn > 0

\(\Rightarrow\)5x^2+1+x^4 > 0 với mọi x

\(\Rightarrow\)h(x) >0

\(\Rightarrow\)h(x) không có nghiệm

3 tháng 6 2020

h(x) = 5x2 + 1 + x4

Ta có : \(x^2\ge0\forall x\Rightarrow5x^2\ge0\forall x\)

\(x^4\ge0\forall x\)

\(1>0\)

=> \(5x^2+1+x^4>0\forall x\)

=> vô nghiệm ( đpcm )

3 tháng 7 2016

\(x^4+x^3+x^2+1\)

\(\Leftrightarrow x^4+x^3+\frac{x^2}{4}+\frac{3x^2}{4}+x+\frac{1}{3}+\frac{2}{3}=0\)

\(\Leftrightarrow x^2\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}\)

Ta thấy:\(x^2\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}>0\)với mọi x

=>vô nghiệm

3 tháng 7 2016

\(x^4+x^3+x^2+x+1=x^4+\left(x^3+x^2\right)+\left(x+1\right)\)

\(=x^4+x\left(x+1\right)+\left(x+1\right)\)

\(=x^4+\left(x+1\right)^2\)

\(x^4\ge0\)

\(\left(x+1\right)^2\ge0\)

\(\Rightarrow x^4+\left(x+1\right)^2\ge0\)

Giả sử đa thức \(x^4+x^3+x^2+x+1=0\)(có nghiệm )

\(\Rightarrow\hept{\begin{cases}x^4=0\\\left(x+1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)(vô lý vì x không thể nhận 2 giá trị cùng 1 lúc)

Do đó \(x^4+x^3+x^2+x+1\) không nghiệm.

10 tháng 5 2019

X^2+2x+2

=x^2+x+x+1+1

=x(x+1) +(x+1)+1

=(x+1)(x+1)+1

=(x+1)^2+1

có (x+1)^2>=0

=>(x+1)^2+1>=1   (đpcm)

nhớ t nhé

10 tháng 5 2019

Mik hok lớp 7 nên chắc chắn là đúng

Ta có x^2+2x+2

= x.x+x +(x +1)+1

= x.x + x.1 + (x +1)+1 ( nhân 1 vào nên ko thay đổi)

= x . (x +1) + (x+1) +1

= x . (x +1) + (x+1) .1 + 1 ( nhân 1 vào nên ko thay đổi)

= (x+1) . (x+1) +1  (phân phối)

= (x+1)^2 +1

Xét :

(x+1)^2 luôn luôn lớn hơn hoặc bằng 0

=> (x+1)^2 +1 luôn lớn hơn 0

=> x^2 + 2x +2 không có nghiệm

Vậy x^2 + 2x +2 không có nghiệm