K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

1 tháng 4 2019

a.\(\Leftrightarrow\left(x+3\right)\left(x^2-x-2-2x^2+3x+5\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(-x^2+2x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=3\\x=-1\end{matrix}\right.\)

1 tháng 4 2019

(x-2)(x+1)(x+3)=(x+3)(x+1)(2x-58)

\(x^3+2x^2-5x-6\)=\(2x^3+3x^2-14x-15\)

\(-x^3-x^2+9x+9=0\)

\(-x^2\left(x+1\right)+9\left(x+1\right)=0\)

\(\left(x+1\right)\left(9-x^2\right)\)=0

(x+1)(3-x)(3+x)=0

*x+1=0 =>x=-1

*3-x=0=>x=3

*3+x=0=>x=-3

21 tháng 6 2017

\(\frac{3\text{x}-1}{x-1}-\frac{2\text{x}+5}{x+3}=1-\)\(\frac{4}{x^2+2\text{x}-3}\)                              \(\left(\text{Đ}K\text{X}\text{Đ}:x\ne1;x\ne-3\right)\)

\(\Leftrightarrow\frac{\left(3\text{x}-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2\text{x}+5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}=\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow\left(3\text{x}-1\right)\left(x+3\right)-\left(2\text{x}+5\right)\left(x-1\right)=\left(x-1\right)\left(x+3\right)-4\)

\(\Leftrightarrow3\text{x}^2+8\text{x}-3-2\text{x}^2-3\text{x}+5=x^2+2\text{x}-3-4\)

\(\Leftrightarrow3\text{x}^2-2\text{x}^2-x^2+8\text{x}-3\text{x}-2\text{x}=-3-4+3-5\Leftrightarrow3\text{x}=-9\Leftrightarrow x=-3\)(không thỏa mãn ĐKXĐ)

Vậy pt vô nghiệm

1 tháng 4 2020

\(\frac{2x}{x+1}+\frac{18}{x^2+2x-3}=\frac{2x-5}{x+3}ĐKXĐ:x\ne-1;-3\)

\(\frac{2x}{x+1}+\frac{18}{\left(x-1\right)\left(x+3\right)}=\frac{2x-5}{x+3}\)

\(2x\left(x-1\right)\left(x+3\right)+18\left(x+1\right)=\left(2x-5\right)\left(x+1\right)\left(x-1\right)\)

\(4x^2+12x+18=-2x-5x^2+5\)

\(4x^2+12x+18+2x+5x^2-5=0\)

\(9x^2-14x+13=0\)

=> vô nghiệm

18 tháng 8 2015

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{x^2+2x-3}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1\right)^2-4}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+1+2\right)\left(x+1-2\right)}=1\)

\(\frac{3x-1}{x-1}-\frac{2x-5}{x+3}+\frac{4}{\left(x+3\right)\left(x-1\right)}=1\)

ĐKXĐ: x \(\ne\) 1 và x \(\ne\) - 3

\(\left(3x-1\right)\left(x+3\right)-\left(2x-5\right)\left(x-1\right)+4=\left(x+3\right)\left(x-1\right)\)

3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 = x2 - x + 3x - 3

3x2 + 9x - x - 3 - 2x2 + 2x + 5x - 5 + 4 - x2 + x - 3x + 3 = 0

13x - 1 = 0

x = \(\frac{1}{13}\)

12 tháng 2 2017

chính là 1/13 

nếu đúng thì

26 tháng 9 2019

\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4x+3}=-\frac{3}{2x-1}\)

<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> 5(x + 1)(2x - 1) - 2(x - 2)(2x - 1) = -3(x - 2)(x + 3)(x + 1)

<=> 6x2 + 15x - 9 = -3x3 - 6x2 + 15x + 18

<=> 6x2 - 9 = -3x3 - 6x2 + 18

<=> 6x2 - 9 + 3x3 + 6x2 - 18 = 0

<=> 12x2 - 27 + 3x3 = 0

<=> 3(4x2 - 9 + x3) = 0

<=> 3(x2 + x - 3)(x + 3) = 0

<=> \(\orbr{\begin{cases}x=-3\\x=\frac{-1\pm\sqrt{13}}{2}\end{cases}}\)

26 tháng 9 2019

DKXD \(x\ne\frac{1}{2};2;-1;3,;-3\)  

<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)

<=> \(\frac{1}{x+3}\left(\frac{5}{x-2}-\frac{2}{x+1}\right)=\frac{-3}{2x-1}\)

<=> \(\frac{1}{x+3}\left(\frac{5x+5-2x+4}{\left(x-2\right)\left(x+1\right)}\right)=\frac{-3}{2x-1}\)

<=> \(\frac{1}{x+3}\left(\frac{3\left(x+3\right)}{\left(x-2\right)\left(x+1\right)}\right)=\frac{3}{1-2x}\)

<=> \(\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{3}{1-2x}\)

<=> \(x^2-x-2=1-2x\)

<=> \(x^2+x-3=0\)

<=> \(\orbr{\begin{cases}x=\frac{-1+\sqrt{13}}{2}\\x=\frac{-1-\sqrt{13}}{2}\end{cases}}\)

chuc ban hoc tot