K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tổng các hệ số là:
A(1)=(3-4+1)^2004*(3+4+1)^2005=0

12 tháng 6 2021

\(A\left(x\right)=\left(3-4+x^2\right)^{2004}\left(3+4x+x^2\right)^{2005}\)

Đa thức `A(x)` sau khi bỏ dấu ngoặc:

\(A\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\)

Với `n = 2 . 2004 + 2 . 2005 = 8018`

Ta thay `x = 1` thì \(A\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\)

`=> A(1)` là tổng các hệ số của `A(x)` khi bỏ dấu ngoặc

Ta có: \(A\left(1\right)=\left(3-4.1+1^2\right)^{2004}\left(3+4.1+1^2\right)^{2005}\)

\(=0^{2004}.8^{2005}=0\)

Vậy tổng các hệ số của đa thức `A(x)` nhận được sau khi bỏ dấu ngoặc là `0`

12 tháng 6 2021

vì sao lại có anxn+an-1xn01 thế

Bài 6:

Tổng các hệ số của đa thức A(x) khi khai triển sẽ bằng với giá trị của A(x) khi x=1

=>Tổng các hệ số khi khai triển là:

\(A\left(1\right)=\left(3-4+1\right)^{2004}\cdot\left(3+1+1\right)^{2005}=0\)

 

4 tháng 9 2023

cảm on vui

Bài khó đến lớp 8 như mình còn ko bít làm thì ai làm hộ bạn đc

26 tháng 11 2021

ko có thời gian

21 tháng 8 2023

Bài 10:

Gọi \(n=2a-1\left(a\in N,a>1\right)\)

Có: \(A=1+3+5+7+...+\left(2a-1\right)\)

\(=\dfrac{1+\left(2a-1\right)}{2}.a=a^2\)

Vậy A là số chính phương

21 tháng 8 2023

thank you vui

15 tháng 4 2018

Ta có: ∆ ’ = 2 2 – (2 -  3 )(2 +  2  ) =4 -4 - 2 2 +2 3  + 6

= 2 3  - 2 2  + 6  >0

Phương trình 2 nghiệm phân biệt .Theo hệ thức Vi-ét, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9