Giải BPT sau và biểu diễn tập nghiệm trên trục số: \(\frac{2-x}{3}< \frac{3-2x}{5}+\frac{1}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{2x+1-6x+4}{4}-\frac{1}{4}\ge0\Leftrightarrow\frac{-4x+4}{4}\ge0\Rightarrow-4\left(x-1\right)\ge0\left(4>0\right)\Rightarrow x-1\le0\left(-4
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Leftrightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Leftrightarrow6x+24+9x+6< 10x-10\)
\(\Leftrightarrow5x+40< 0\)
\(\Leftrightarrow x< -8\)
Tự biểu diễn nha bạn
\(\frac{x+4}{5}+\frac{3x+2}{10}< \frac{x-1}{3}\)
\(\Rightarrow\frac{6\left(x+4\right)}{30}+\frac{3\left(3x+2\right)}{30}< \frac{10\left(x-1\right)}{30}\)
\(\Rightarrow6x+24+9x+6< 10x-10\)
\(5x< -40\)
\(\Rightarrow x< -8\)
\(\Leftrightarrow5\left(7x-1\right)+60x>6\left(16-x\right)\)
=>35x-5+60x>96-6x
=>95x+6x>96+5
=>101x>101
hay x>1
Vậy: S={x|x>1}
\(\dfrac{7x-1}{6}+2x>\dfrac{16-x}{5}\\ \Leftrightarrow\dfrac{5.\left(7x-1\right)}{30}+\dfrac{60x}{30}>\dfrac{6.\left(16-x\right)}{30}\\ \Leftrightarrow35x-5+60x>96-6x\\ \Leftrightarrow35x+60x+6x>96+5\\ \Leftrightarrow101x>101\\ \Leftrightarrow x>1\)
Em tự biểu diễn trục số nha!
a/ A = \(2x-5\ge0\)
\(\Leftrightarrow\)\(2x\ge5\)
\(\Leftrightarrow\)\(x\ge\frac{5}{2}\)
b/ \(\frac{4x-1}{3}\)- \(\frac{2-x}{15}\)\(\le\)\(\frac{10x-3}{5}\)
\(\Leftrightarrow\)5(4x + 1) - 2 - x \(\le\)3(10x - 3)
\(\Leftrightarrow\)20x + 5 - 2 -x \(\le\)30x - 9
\(\Leftrightarrow\)9x - 30x \(\le\)-9 + 2
\(\Leftrightarrow\)-21x \(\le\)-7
\(\Leftrightarrow\)x \(\ge\)\(\frac{1}{3}\)
Kết luận và biểu diễn tập nghiệm nha
\(\frac{2-x}{3}< \frac{3-2x}{5}+\frac{1}{3}\)
\(\Leftrightarrow5\left(2-x\right)< 3\left(3-2x\right)+5\)
\(\Leftrightarrow10-5x< 9-6x+5\)
\(\Leftrightarrow10-5x< -6x+14\)
\(\Leftrightarrow x< 4\)
Vậy bất phương trình có tập nghiệm là: S ={x| x < 4}
#Học tốt!
Cảm ơn bạn nhìu