Tìm các số nguyên n để phân số n+3/n-2 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
a,Với \(n\in Z\)Ta có \(3\in Z;n+2\in Z\)
Do đó để \(A=\frac{3}{n+2}\)là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy với n thuộc Z và n khác -2 thì A là phân số
b;Để A nguyên \(\Leftrightarrow3⋮n+2\Rightarrow n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{1;-3;1;-5\right\}\)
Vậy.................................
P/s : thêm đk nữa bn ơi :)
Để A là số nguyên thì n+3 chia hết cho n+2
=>n+2+1 chia hết cho n+2
=>\(n+2\in\left\{1;-1\right\}\)
=>\(n\in\left\{-1;-3\right\}\)
Để A = 3/n-2 là phân số thì n - 2 ≠ 0 => n ≠ 2 => n = { n ∈ N | n ≠ 2 }
Để 3/n-2 ∈ Z 3 ∈ B ( n - 2 ) <=> n - 2 ∈ Ư ( 3 ) = { - 6 ; - 1 ; 1 ; 3 }
=> n - 2 ∈ { - 6 ; - 1 ; 1 ; 3 }
=> n = { - 4 ; 1 ; 3 ; 5 }
\(S=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để S là số nguyên thì \(\frac{5}{n-2}\) nguyên
\(\Rightarrow\frac{5}{n-2}\) nguyên
\(\Rightarrow5⋮n-2\)
\(\Rightarrow n-2\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{3;7;1;-3\right\}\)