K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

Có: y=sin^4x−cos^4x
        = (sin^2x−cos^2x)(sin^2x+cos^2x)
        = −cos2x
=> −1≤y≤1
=> min y=−1⇔cos2x=1⇔x=kπ
     max y=1⇔cos2x=−1⇔x=π2+kπ
Vậy min y = -1; max y=1

NV
10 tháng 9 2021

\(y=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+sin2x\)

\(=1-\dfrac{1}{2}sin^22x+sin2x\)

Đặt \(sin2x=t\in\left[-1;1\right]\Rightarrow y=f\left(t\right)=-\dfrac{1}{2}t^2+t+1\)

\(-\dfrac{b}{2a}=1\) ; \(f\left(-1\right)=-\dfrac{1}{2}\) ; \(f\left(1\right)=\dfrac{3}{2}\)

\(\Rightarrow y_{min}=-\dfrac{1}{2}\) khi \(sin2x=-1\)

\(y_{max}=\dfrac{3}{2}\) khi \(sin2x=1\)

3 tháng 8 2019

Phân tích thành nhân tử:

(4x + 3y)2 + (6xy - 2)2

=\((16x^2+24xy+9y^2)+(36x^2y^2-24xy+4)\)

=\(16x^2+24xy+9y^2+36x^2y^2-24xy+4\)

=\(16x^2+9y^2+36x^2y^2+4\)

=\((4x)^2+(3y)^2+(6xy)^2+2^2\)

MÌNH CHỈ LÀM ĐC TỚI ĐÂY

24 tháng 10 2019

\(A=3\cdot\left(\sin^4\left(x\right)+\cos^4\left(x\right)\right)-2\cdot\left(\sin^6\left(x\right)+\cos^6\left(x\right)\right)\)

\(=3\cdot\sin^4\left(x\right)+3\cdot\cos^4\left(x\right)-2\cdot\left(\left(\sin^2\left(x\right)\right)^3+\left(\cos^2\left(x\right)\right)^3\right)\)

\(=3\cdot\sin^4\left(x\right)+3\cdot\cos^4\left(x\right)-2\cdot\left(\left(\sin^2\left(x\right)+\cos^2\left(x\right)\right)\cdot\left(\sin^4\left(x\right)-\sin^2\left(x\right)\cdot\cos^2\left(x\right)+\cos^4\left(x\right)\right)\right)\)

\(=3\cdot\sin^4\left(x\right)+3\cdot\cos^4\left(x\right)-2\cdot\left(\sin^4\left(x\right)-\sin^2\left(x\right)\cos^2\left(x\right)+\cos^4\left(x\right)\right)\)

\(=3\sin^4\left(x\right)+3\cos^4\left(x\right)-2\sin^4\left(x\right)-2\cos^4\left(x\right)+2\sin^2\left(x\right)\cos^2\left(x\right)\)

\(=\sin^4\left(x\right)+\cos^4\left(x\right)+2\sin^2\left(x\right)\cdot\cos^2\left(x\right)\)

\(=\left(\sin^2\left(x\right)+\cos^2\left(x\right)\right)^2\)

\(=1^2\)

\(=1\)

Vậy kết quả của biểu thức không phụ thuộc vào giá trị của x (đpcm)

(chúc bạn học tốthaha)

26 tháng 8 2021

1, \(sin\left(x+\dfrac{\pi}{6}\right)+cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{6}}{2}\)

⇔  \(\dfrac{\sqrt{2}}{2}sin\left(x+\dfrac{\pi}{6}\right)+\dfrac{\sqrt{2}}{2}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}\)

⇔ \(sin\left(x+\dfrac{\pi}{6}+\dfrac{\pi}{4}\right)=sin\dfrac{\pi}{4}\)

2, \(\left(\sqrt{3}-1\right)sinx+\left(\sqrt{3}+1\right)cosx=1-\sqrt{3}\)

⇔ \(\dfrac{\left(\sqrt{3}-1\right)}{2\sqrt{2}}sinx+\dfrac{\left(\sqrt{3}+1\right)}{2\sqrt{2}}cosx=\dfrac{1-\sqrt{3}}{2\sqrt{2}}\)

⇔ sinx . si

27 tháng 8 2021

Giải hết dùm mik đc k câu 3 luôn

3 tháng 8 2018

a) \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ac\)

\(=a^2+b^2+c^2+2ab-2bc-2ac-a^2+2ac-c^2-2ab+2ac\)

\(=b^2-2bc+2ac=b.\left(b-2c+2a\right)\)

b) \(x^4+2x^3+5x^2+4x-12\)

\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)

\(=x^3.\left(x-1\right)+3x^2.\left(x-1\right)+8x.\left(x-1\right)+12.\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)

\(=\left(x-1\right)\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)+\left(6x+12\right)\right]\)

\(=\left(x-1\right)\left[x^2.\left(x+2\right)+x.\left(x+2\right)+6.\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

3 tháng 8 2018

Pạn Khánh Châu ơi

Cái dòng thứ 2 đấy, dấu hiệu nhận biết là j vậy

Mà sao pạn phân tích hay vậy????

NV
4 tháng 2 2021

\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)

\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)

\(A=sin^2x+cos^2x=1\)

\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)

\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)

\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)

\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)

\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)