K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2020

Bài làm:

a) \(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)

\(P=2x^4y^5-xy^4+x^3-y^2+4\)

Bậc của đa thức P là 9

b) Ta có:

\(N\left(-1\right)=2.\left(-1\right)+7+\left(-1\right)^3-2.\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)

\(N\left(-1\right)=-2+7-1-2-1+\frac{1}{2}\)

\(N\left(-1\right)=\frac{3}{2}\)

\(N\left(2\right)=2.2+7+2^3-2.2^2+2+\frac{1}{2}\)

\(N\left(2\right)=4+7+8-8+2+\frac{1}{2}\)

\(N\left(2\right)=\frac{27}{2}\)

c) Tại \(x=-\frac{1}{2};y=2\)thì giá trị của biểu thức P là:

\(P=2.\left(-\frac{1}{2}\right)^4.2^5-\left(-\frac{1}{2}\right).2^4+\left(-\frac{1}{2}\right)^3-2^2+4\)

\(P=4+8-\frac{1}{8}-4+4\)

\(P=\frac{95}{8}\)

Học tốt!!!!

a, Ta có :

 \(P=x^4y^5+x^3+3+x^4y^5-y^2-xy^4+1\)

\(=2x^4y^5+x^3+4-y^2-xy^4\)

Bậc : 9 

b,TH1 :  \(N\left(-1\right)=2\left(-1\right)+7+\left(-1\right)^3-2\left(-1\right)^2+\left(-1\right)+\frac{1}{2}\)

\(=-2+7-1-2-1+\frac{1}{2}=\frac{3}{2}\)

TH2 : tương tự 

c, Thay vào tính thôi.

6 tháng 8 2016

mình khuyên bạn nên đưa lên từng câu một thôi chứ bạn đưa lên dài thế này ai nhìn cũng khong muốn làm đâu nha

BẠN HÃY DÙNG Fx ĐỂ GHI CHO DỄ HIỂU NHÉ BẠN

16 tháng 6 2020

\(M=\frac{-2}{7}x^4y\cdot\left(-\frac{21}{10}\right)xy^2z^2=\left(-\frac{2}{7}\cdot-\frac{21}{10}\right)\left(x^4x\right)\left(yy^2\right)z^2=\frac{3}{5}x^5y^3z^2\)

Hệ số 3/5

\(N=-16x^2y^2z^4\cdot\left(-\frac{1}{4}\right)xy^2z=\left(-16\cdot-\frac{1}{4}\right)\left(x^2x\right)\left(y^2y^2\right)\left(z^4z\right)=4x^3y^4z^5\)

Hệ số 4

Làm nốt b Quỳnh đag lm dở.

Ta có \(P\left(x\right)=C\left(x\right)+D\left(x\right)\)

\(P\left(x\right)=2x^4+2x-6x^2-x^3-3+4x^2+x^3-2x^2-2x^4-2x+5x^2+1\)

\(P\left(x\right)=x^2-2\)

Ta có : \(P\left(x\right)=x^2-2=0\)

\(\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

`a, M = 3x - 5y - 3`

Bậc: `1`.

`b, N = 18t^3 + xt^2 - x^2t - 4`.

Bậc: `3`

a: \(A=-4x^5y^3-2x^2y^3z^2-2y^4\)

b: \(B=-4x^5y^3-2x^2y^3z^2-2y^4+2x^2y^3z^2-\dfrac{2}{3}y^4+\dfrac{1}{5}x^4y^3=-4x^5y^3+\dfrac{1}{5}x^4y^3-\dfrac{8}{3}y^4\)

8 tháng 6 2020

\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)

\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)

\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)

Xét bậc của từng hạng tử

-2x6y có bậc là 7

-7/2x4y3 có bậc là 7

-2y7 có bậc là 7 

=> Bậc của M = 7

Thay x = 1 , y = -1 vào M ta được : 

\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)

\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)

\(M=2+\frac{7}{2}+2+9\)

\(M=\frac{33}{2}\)

Vậy giá trị của M = 33/2 khi x = 1 , y = -1

8 tháng 6 2020

Ta có M = (3x6y - 5x6y) + (1/2.x4y3 - 4.x4.y3) - (4y7 + 2y7) + (11 - 2)

               = -2x6y - 3,5x4y3 - 2y7 + 9

Bậc của đa thức M là 7 

b) M(1 ; -1) = -2.16.(-1) - 3,5.14.(-1)3 - 2.(-1)7 + 9

                   = 2 + 3,5 + 2 + 9 = 16,5 

5 tháng 6 2020

a) f(x) = -x + 2x2 + 3x5 + 9/2

g(x) = 3x - 2x2 - 3x5 + 3

b) f(x) + g(x) = ( -x + 2x2 + 3x5 + 9/2 ) + ( 3x - 2x2 - 3x5 + 3 )

                     = ( -x + 3x ) + ( 2x2 - 2x2 ) + ( 3x5 - 3x5 ) + ( 9/2 + 3 )

                     = 2x + 15/2

c) Đặt h(x) = 2x + 15/2

Để h(x) có nghiệm <=> 2x + 15/2 = 0

                              <=> 2x = -15/2

                              <=> x = -15/4

Vậy nghiệm của h(x) là -15/4

Quỳnh chưa sắp xếp nhé !, sai bảo cj, cj sửa.

a, Ta có :  \(f\left(x\right)=-x+2x^2-\frac{1}{2}+3x^5+5\)

\(=-x+2x^2+\frac{9}{2}+3x^5\)

Sắp xếp : \(f\left(x\right)=3x^5+2x^2-x+\frac{9}{2}\)

\(g\left(x\right)=3-x^5+\frac{1}{3}x^3+3x-2x^5-2x^2-\frac{1}{3}x^3\)

\(=3-3x^5+3x-2x^2\)

Sắp xếp : \(g\left(x\right)=-3x^5-2x^2+3x+3\)

b, \(f\left(x\right)+g\left(x\right)=\left(3x^5+2x^2-x+\frac{9}{2}\right)+\left(-3x^5-2x^2+3x+3\right)\)

\(=3x^5+2x^2-x+\frac{9}{2}-3x^5-2x^2+3x+3\)

\(=2x+\frac{15}{2}\)

c, \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)

Đặt f(x) + g(x) = 2x + 15/2  (đã có bên trên.)

Ta có : \(h\left(x\right)=2x+\frac{15}{2}=0\)

\(\Leftrightarrow2x+\frac{15}{2}=0\Leftrightarrow2x=-\frac{15}{2}\Leftrightarrow x=-\frac{15}{4}\)

20 tháng 3 2023

a) Ta có:

\(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3+3x^5-2x^2-x^4+1\)

\(f\left(x\right)=\left(-x^5+3x^5\right)+\left(3x^4-x^4\right)+\left(2x^3-\dfrac{1}{2}x^3\right)+\left(x^2-2x^2\right)+1\)

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

Sắp xếp đa thức f(x) the lũy thừa giảm dần của biến, ta được:

\(f\left(x\right)=2x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

b) Bậc của đa thức f(x) là 5

c) Ta có:

\(f\left(1\right)=2\cdot1^5+2\cdot1^4+\dfrac{3}{2}\cdot1^3-1^2+1=5,5\) . Vậy f(1) = 5,5.

\(f\left(-1\right)=2\cdot\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)^3-\left(-1\right)^2+1=-1,5\). Vậy f(-1) = -1,5.

20 tháng 3 2022

\(B=\dfrac{3}{4}xy^2-\dfrac{1}{3}x^2y-\dfrac{5}{6}xy^2+2x^2y=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y\)

Bậc:3

Thay x=-1, y=1 vào B ta có:

\(B=-\dfrac{1}{12}xy^2+\dfrac{5}{3}x^2y=-\dfrac{1}{12}.\left(-1\right).1^2+\dfrac{5}{3}.\left(-1\right)^2.1=\dfrac{1}{12}+\dfrac{5}{3}=\dfrac{7}{4}\)