Tìm tập hợp các số nguyên a sao cho :
-3 ≤ \(\frac{a}{2}\) ≤ 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: -3/a+2 - 2/a+2 = -1/a+2
Để -3/a+2 - 2/a+2 là số nguyên thì -1 chia hết cho a+2
=> a+2 thuộc {1;-1}
=>a thuộc {-1;-3}
Vậy: a thuộc {-1;-3}
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy số phần tử của tập hợp A là 2
\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)
\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)
\(\Leftrightarrow7x-7=6x+30\)
\(\Leftrightarrow7x-6x=7+30\)
\(\Leftrightarrow x=37\)
Vậy nghiệm của phương trình là x = 37
Mk nghĩ là như thê này
Câu 1:
6 chia hết cho x-1 => x-1 là ước của 6.Mà Ư(6)={1;-1;2;-2;3;-3;6;-6}=> x={2;0;3;-1;4;-2;7;-5}
Câu 2;
14 chia hết cho 2x+3
=>2x+3 là ước của 14.Mà Ư(14)={1;-1;2;-2;7;-7;14;-14}
=>x={-1;-2;2;-5;}
Để 3a+5/a+3 là số nguyên \(3a+9-4⋮a+3\)
\(\Leftrightarrow a+3\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(a\in\left\{-2;-4;-1;-5;1;-7\right\}\)
2. Để A có giá trị nguyên => 11 chia hết 2n - 3
=> 2n-3 thuộc Ư(11) = { 1 ; -1 ; 11; -11}
=> 2n thuộc { 4 ; 2 ; 14 ; -8}
=> n thuộc { 2 ; 1 ; 7 ; -4}
Mà n là số tự nhiên => n = 1 ; 2; 7 (tm)
3.\(\frac{-3x-15}{-2x}=3\)=> -3x - 15 = -6x
=> -3x + 6x = 15
=> 3x = 15
=> x = 5 (tm)
4. \(\frac{2}{x+1}=\frac{x+1}{2}\)=> (x+1)2 = 4
=> (x + 1)2 = (+-2)2
=> x + 1 = +-2
=> x = 1 ; -3 (tm)
Vì tích đó có chứa các thừa số 20;30;40;50;60;70;80;90 nên tích 12.14.16...96.98 có chữ số tận cùng là 0
Vậy C có chữ số tận cùng là 0
mk hôm qua ms hỏi bài này, h lm theo trí nhớ nè...
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1+5}{\sqrt{x}-1}=\frac{2\sqrt{x}-1}{\sqrt{x}-1}+\frac{5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
Mà \(2+\frac{5}{\sqrt{x}-1}\) là nguyên \(\Rightarrow\frac{5}{\sqrt{x}-1}\) là nguyên
\(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Mà \(\sqrt{x}-1\) là số nguyên
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy tập hợp A có 2 phần tử
Có :-3 ≤ \(\frac{a}{2}\) ≤ 6
⇒-6 ≤ a ≤ 12
⇒aϵ{-6, -5,..., 11, 12}
Vậy aϵ{-6, -5,..., 11, 12}