K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2020

\(A=\frac{12n+1}{2n+3}\)

Để A là phân số => \(2x+3\ne0\)<=> \(x\ne-\frac{3}{2}\)

\(A=\frac{12n+1}{2n+3}=\frac{6\left(2n+3\right)-17}{2n+3}=6-\frac{17}{2n+3}\)

Để A là số nguyên => \(\frac{17}{2n+3}\)là số nguyên

<=> \(17⋮2n+3\)<=> \(2n+3\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

2n+31-117-17
n-1-27-10
14 tháng 2 2017

A=\(\frac{2n+7}{n+3}\)

\(\Rightarrow\)2n+7\(⋮\)n+3

\(\Rightarrow\)2(n+3)+1\(⋮\)n+3

\(\Rightarrow\)1\(⋮\)n+3\(\Rightarrow\)n+3\(\in\)Ư(1)={1;-1}

\(\Rightarrow\)n\(\in\){-2;-4}

14 tháng 2 2017

\(\frac{2n+7}{n+3}=2+\frac{1}{n+3}\)

Để \(2+\frac{1}{n+3}\) là số nguyên <=> \(\frac{1}{n+3}\) là số nguyên

=> n + 3 thuộc ước của 1 => Ư(1) = { - 1; 1 }

Ta có : n + 3 = 1 => n = - 2 (TM)

           n + 3 = - 1 => n = - 4 (TM)

Vậy n = { - 4; - 2 }

16 tháng 3 2016

P= \(\frac{2n+1}{n+1}\)\(\frac{2n+2-1}{n+1}\) = \(\frac{2n+2}{n+1}\) - \(\frac{1}{n-1}\) = 2- \(\frac{1}{n-1}\)

a) Vì 2 thuộc Z nên để P thuộc Z thì \(\frac{1}{n-1}\)  phải thuộc Z 

=> 1 chia hết cho n-1 => n-1 thuộc Ư(1)={1;-1}

TH1:n-1=1 => n=2

TH2:n-1=-1 => n=0. Vậy n thuộc {2;0}

  • b) Vì 2 thuộc Z nên để P có GTLN thì -\(\frac{1}{n-1}\) có GTLN => \(\frac{1}{n-1}\) có GTNN

Ta có: 1 thuộc Z và \(\frac{1}{n-1}\) có GTNN => n-1 là số nguyên âm lớn nhất => n-1=-1 => n=0

Khi đó, P= \(\frac{2.0+1}{0+1}\) = \(\frac{1}{1}\)= 1

  • Vì 2 thuộc Z nên để P có GTNN thì - \(\frac{1}{n-1}\) có GTNN => \(\frac{1}{n-1}\) có GTLN

=> n-1 là số nguyên dương nhỏ nhất => n-1=1 => n=2

Khi đó, P= \(\frac{2.2+1}{2+1}\)\(\frac{5}{3}\)

 

7 tháng 3 2019

P thuộc Z khi: 2n+1 chia hết cho n+1

<=> 2n+2-1 chia hết cho n+1<=> 2(n+1)-1 chia hết cho n+1

<=> 1 chia hết cho n+1 (vì: 2(n+1) chia hết cho n+1)

<=> n+1 E {-1;1} <=> n E {-2;0}. Vậy: n E {-2;0} P/S: E là thuộc nha!

b)\(P=\frac{2n+1}{n+1}=\frac{2n+2-1}{n+1}=2-\frac{1}{n+1}\)

+)P lớn nhất khi n+1 là số nguyên âm lớn nhất => n+1=-1=>n=-2

Thay vào ta được:

\(P_{max}=2-\frac{1}{-1}=2-\left(-1\right)=3\)

+)P nhỏ nhất khi n+1 là số nguyên dương bé nhất=>n+1=1=>n=0

Thay vào ta được:

\(P_{min}=2-\frac{1}{1}=2-1=1\)

18 tháng 8 2015

Ta co: goi d la UCLN(2n+3;n-1)

n-1 chia het cho n-1

Suy ra 2.(n-1) chia het cho n-1

Suy ra 2n-2 chia het cho n-1

Suy ra 2n-2+4 chia het cho n-1

Suy ra 2n+2 chia het cho n-1

Ta co:2n+3-2n+2=1

Suy ra 1 chia het cho d

Suy ra d=1

Vay 2n+3/n-1 la PS

 

15 tháng 3 2018

mau lên nha mình đang gấp

22 tháng 3 2018

Đặt \(A=\frac{9n-4}{2n-7}=\frac{9n-\frac{63}{2}+\frac{33}{2}}{2n-7}=\frac{\frac{9}{2}\left(2n-7\right)+\frac{33}{2}}{2n-7}=\frac{9}{2}+\frac{\frac{55}{2}}{2n-7}\)

Để A có GTLN 

\(\Leftrightarrow\frac{\frac{55}{2}}{2n-7}\)có GTLN

\(\Leftrightarrow2n-7\)có GTNN, 2n-7 lớn hơn 0 và n thuộc Z

\(\Leftrightarrow2n-7=1\)

\(\Leftrightarrow2n=8\)

\(\Leftrightarrow n=4\)

Vậy, A có GTLN là 32 khi x=4

11 tháng 4 2017

để A có giá trị bằng 1

suy ra 3 phải chia hết cho n-1

suy ra n-1 \(\in\)Ư(3)={1,3 }

TH1 n-1=1\(\Rightarrow\)n=1+1=2

TH2 n-1=3\(\Rightarrow\)n=3+1=4

Vậy n = 2 hoặc n =4

11 tháng 4 2017

 a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1   suy ra n-1=3

                                                                                     n=4

b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương

              từ trên suy ra n-1=1 hoặc 3

    nếu n-1=1 suy ra n =2   3/n-1=3 là snt

    nếu n-1=3  suy ra 3/n-1=3/3=1 loại vì ko là snt                                     

11 tháng 6 2021

a) C được xác định <=> x khác +- 2

b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)

Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)

c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1

Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương

11 tháng 6 2021

mình cảm ơn ạ

11 tháng 2 2018

\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)

tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn

11 tháng 2 2018

cảm ơn cậu giúp mk câu c với ạ

a: \(N=\left(\dfrac{1}{y-1}+\dfrac{1}{\left(y-1\right)\left(y^2+y+1\right)}\cdot\dfrac{y^2+y+1}{y+1}\right)\cdot\left(y^2-1\right)\)

\(=\dfrac{y+1+1}{\left(y-1\right)\left(y+1\right)}\cdot\left(y^2-1\right)=y+2\)

b: Thay y=1/2 vào N, ta được:

N=1/2+2=5/2

c: Để N>0 thì y+2>0

hay y>-2

Kết hợp ĐKXĐ, ta được:

\(\left\{{}\begin{matrix}y>-2\\y\notin\left\{-1;1\right\}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
a. ĐKXĐ: $y\neq \pm 1$

\(N=\left(\frac{1}{y-1}-\frac{1}{(1-y)(1+y+y^2)}.\frac{y^2+y+1}{y+1}\right).(y^2-1)\)

\(=(\frac{1}{y-1}-\frac{1}{(1-y)(y+1)})(y-1)(y+1)\)

\(=\frac{1}{y-1}(y-1)(y+1)-\frac{1}{-(y-1)(y+1)}.(y-1)(y+1)=y+1-(-1)=y+2\)

b. Khi $y=\frac{1}{2}$ thì:
$N=\frac{1}{2}+2=\frac{5}{2}$

c. Để $N>0\Leftrightarrow y+2>0\Leftrightarrow y>-2$

Kết hợp đkxđ suy ra $y>-2$ và $y\neq \pm 1$ thì $N$ dương.