Giúp mình câu hỏi và giải thích ạ
Khoảng cách d từ gốc tọa độ O(0;0) đến đường thẳng y=\(-\sqrt{2}x+1\) là :
A,d=\(\frac{1}{\sqrt{3}}\) B,d=\(\sqrt{3}\) C, d=\(\frac{2}{\sqrt{3}}\) D,d=\(\frac{\sqrt{3}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
y = m\(x\) + 2
⇒ y - m\(x\) - 2 = 0
⇒ -m\(x\) + y - 2 = 0
⇒d(O;d) = \(\dfrac{\left|0-0-2\right|}{\sqrt{m^2+1}}\) = 1
⇒ \(\sqrt{1+m^2}\) = 2
⇒ 1 + m2 = 4 ⇒ m2 = 3 ⇒ m = -\(\sqrt{3}\); m = \(\sqrt{3}\)
b, d(O;d) = \(\dfrac{2}{\sqrt{m^2+1}}\)
2 > 0; 1 + m2 > 0 Vậy \(\dfrac{2}{\sqrt{m^2+1}}\) lớn nhất ⇔ 1 + m2 nhỏ nhất.
m2 ≥ 0 ⇒ 1 + m2 ≥ 1 vậy m2 + 1 đạt giá trị nhỏ nhất là 1 khi m = 0
⇒d(max) = 2 ⇒ m= 0
Vậy m = 0 thì khoảng cách từ gốc tọa độ đến đường thẳng d là lớn nhất và khoảng cách đó là 2
Kết luận a, Với m = -\(\sqrt{3}\); \(\sqrt{3}\) thì khoảng cách từ gốc tọa độ tới d bằng 1
b, Với m = 0 thì khoảng cách từ gốc tọa độ tới d bằng 2 là khoảng cách lớn nhất .
a: y=mx+2
=>mx-y+2=0
d(O;(d))=1
=>\(\dfrac{\left|0\cdot m+0\cdot\left(-1\right)+2\right|}{\sqrt{m^2+1}}=1\)
=>căn m^2+1=2
=>m^2+1=4
=>m^2=3
=>\(m=\pm\sqrt{3}\)
b: Để d(O;(d)) lớn nhất thì m=0
Gọi A là giao điểm của d với Ox \(\Rightarrow A\left(-\dfrac{1}{m-3};0\right)\Rightarrow OA=\dfrac{1}{\left|m-3\right|}\)
Gọi B là giao điểm của d với Oy \(\Rightarrow B\left(0;1\right)\Rightarrow OB=1\)
Từ O kẻ OH vuông góc AB \(\Rightarrow OH=\dfrac{1}{2}\)
Áp dụng hệ thức lượng trong tam giác vuông OAB:
\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}\Rightarrow4=\left(m-3\right)^2+1\)
\(\Rightarrow\left(m-3\right)^2=3\Rightarrow\left[{}\begin{matrix}m=3+\sqrt{3}\\m=3-\sqrt{3}\end{matrix}\right.\)
Bạn viết sai rồi, đường thẳng y-mx+2 =0 hay y=mx+2 vậy bạn?
y=(m-1)x+2
=>(m-1)x-y+2=0
Khoảng cách từ O đến (d) là:
\(\dfrac{\left|0\left(m-1\right)+0\left(-1\right)+2\right|}{\sqrt{\left(m-1\right)^2+1}}=\dfrac{2}{\sqrt{\left(m-1\right)^2+1}}\)
Để khoảng cách từ O đến (d) bằng \(\sqrt{2}\) thì \(\dfrac{2}{\sqrt{\left(m-1\right)^2+1}}=\sqrt{2}\)
=>\(\sqrt{\left(m-1\right)^2+1}=\sqrt{2}\)
=>\(\left(m-1\right)^2+1=2\)
=>\(\left(m-1\right)^2=1\)
=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)
- TXĐ : R ( \(y=-\sqrt{2}x+1\) )
+, Cho x = 0 => y = 1 => Điểm ( 0; 1 )
+, Cho y = 0 => x = \(\frac{1}{\sqrt{2}}\) => Điểm \(\left(\frac{1}{\sqrt{2}};0\right)\)
- Ta có : \(\left\{{}\begin{matrix}OA=\left|1\right|=1\\OB=\left|\frac{1}{\sqrt{2}}\right|=\frac{1}{\sqrt{2}}\end{matrix}\right.\)
- Áp dụng tỉ số lượng giác vào tam giác OAB vuông tại O, đường cao OH được :
\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{1^2}+\frac{1}{\left(\frac{1}{\sqrt{2}}\right)^2}=3\)
=> \(OH^2=\frac{1}{3}\)
=> \(OH=\frac{1}{\sqrt{3}}\)
Vậy đáp án là A . d = \(\frac{1}{\sqrt{3}}\)