K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2020

Áp dụng BĐT AM - GM cho các cặp số không âm, ta được:

\(a^2+b^2\ge2ab\)(1)

\(a^2+1\ge2a\)(2)

\(b^2+1\ge2b\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được:

\(2\left(a^2+b^2+1\right)\ge2\left(ab+a+b\right)\)

\(\Leftrightarrow a^2+b^2+1\ge ab+a+b\left(q.e.d\right)\)

Đẳng thức xảy ra khi a = b = 1

17 tháng 6 2020

\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\) ( đúng )

=> đpcm

18 tháng 12 2017

c) theo bđt cauchy ta có

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)

cộng hết lại rút 2 đi \(\Rightarrowđpcm\)

18 tháng 12 2017

b)theo bđt bunhiacopxki ta có

\(\left(1^2+a^2\right)\left(1^2+b^2\right)\ge\left(1+ab\right)^2\)

\(\Rightarrowđpcm\)

=>(ab-1)^2+ab(a-b)^2>=0

=>a^2b^2-2ab+1+ab(a^2-2ab+b^2)>=0

=>a^2b^2-2ab+1+a^3b-2a^2b^2+ab^3>=0

=>a^3b+ab^3-a^2b^2-2ab+1>=0

=>ab(a^2+b^2)-2ab-a^2b^2+1>=0

=>ab(a^2+b^2-2-ab)+1>=0(luôn đúng)

27 tháng 9 2020

a,Ta có:\(a^2+b^2\ge2ab\)

            \(a^2+c^2\ge2ac\)  

            \(b^2+c^2\ge2bc\)

Cộng theo từng về 3 bđt trên ta đc:

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)

Xảy ra dấu đt khi \(a=b=c\)

b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho \(a+b>0\))

\(\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)

Xảy ra dấu đẳng thức khi \(a=b\)

c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\forall a,b,c\)

Xảy ra đẳng thức khi \(a=b=c=0\)

              

27 tháng 9 2020

Phần b mình tặng thêm một cách giải không dùng biến đổi tương đương: 

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

Dấu bằng tại a=b

10 tháng 9 2018

\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)

\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)

\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)

\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)

26 tháng 3 2020
https://i.imgur.com/HaXu9jP.jpg
26 tháng 3 2020
https://i.imgur.com/b0eBoIF.jpg
1 tháng 12 2019

bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{a}{bc}\ge\frac{9}{2}\)

mặt khác: \(\Sigma_{cyc}\frac{a}{bc}=\frac{1}{2}\Sigma_{cyc}\left(\frac{b}{ca}+\frac{c}{ab}\right)\ge\Sigma\frac{1}{a}\)\(\Rightarrow\)\(\Sigma_{cyc}\frac{a}{bc}\ge\Sigma_{cyc}\frac{1}{a}\)

do đó cần CM: \(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{1}{a}\ge\frac{9}{2}\) (1) 

\(VT_{\left(1\right)}=\Sigma_{cyc}\left(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\)

"=" \(\Leftrightarrow\)\(a=b=c=1\)

11 tháng 9 2017

bài 1) 

ta có \(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1\ge0\)

=> \(a^2+b^2+1\ge ab+a+b\)

11 tháng 9 2017

ý 1 mk làm òi còn 2 ý kia chưa làm thui

15 tháng 1 2021

Bất đẳng thức cần chứng minh tương đương:

\(a^{10}b^2+b^{10}a^2\ge a^8b^4+b^8a^4\)

\(\Leftrightarrow a^8+b^8\ge a^6b^2+b^6a^2\) (Do \(a^2b^2\ge0\))

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng).

Vậy ta có đpcm.

 

15 tháng 1 2021

bạn trình bày rõ ra vì sao lại có suy ra thứ 2 vậy. Giải thik cho mk đc ko Sigma CTV