K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

x2 > 2( x - 1 )

<=> x2 - 2x + 2 > 0

<=> ( x2 - 2x + 1 ) + 1 > 0

<=> ( x - 1 )2 + 1 > 0 ( luôn đúng ∀ x ∈ R )

Vậy bđt ban đầu được chứng minh

10 tháng 8 2023

Ta có:

\(x^2-x+1\)

\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\) và \(\dfrac{3}{4}>0\)

Nên: \(x^2-x+1>0\)

10 tháng 8 2023

\(x^2-x+1\)

\(=x^2-\dfrac{1}{2}.x-\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x ( đpcm )

18 tháng 5 2022

\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng với \(\forall x,y\))

-Vậy BĐT đã được c/m.

-Dấu "=" xảy ra khi \(x=y\)

18 tháng 5 2022

ta co

vt (x+y)2=x2+y2+2xy

=x2-2xy+y2+4xy≥ 4xy (dpcm)

 

11 tháng 8 2017

Ta có : x2 - 2xy + y2 + 1 = (x - y)2 + 1

Vì : \(\left(x-y\right)^2\ge0\forall x\in R\)

Nên : \(\left(x-y\right)^2+1\ge1\forall x\in R\)

Suy ra : \(\left(x-y\right)^2+1>0\forall x\in R\)

Vậy x2 - 2xy + y2 + 1 \(>0\forall x\in R\)

Ta có : x - x2 - 1

= -(x2 - x + 1)

\(=-\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\)

\(=-\left(x^2-x+\frac{1}{4}\right)-\frac{3}{4}\)

\(=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\)

Vì : \(-\left(x-\frac{1}{2}\right)^2\le0\forall x\in R\)

Nên : \(-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

Vậy x - x2 - 1 \(< 0\forall x\in R\)

11 tháng 8 2017

hỏi tí cái chữ A ngược đó là gì vậy bạn

11 tháng 12 2019

a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x

Ta có:

\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy \(x^2-x+1>0\) với mọi \(x\in R\)

b)Ta có:

\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)

10 tháng 10 2017

\(=x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

Vậy \(x^2-x+1>0\)với mọi số thực \(x\)

10 tháng 10 2017

x2-x+1=x2-2.x.1/2+1/4-1/4+1

=(x-1/2)2+3/4

vì (x-1/2)2 luôn không âm

 nên x2-x+1 luôn dương với mọi x

19 tháng 12 2017

x^2-x+1>0

<=> x^2-2.x.1/2+1/4-1/4+1

<=> x^2-2x.1/2+1/4+3/4 >0

<=> (x-1/2)^2 +3/4>0(luôn đúng với mọi x vì (x-1/2)^2>0 với mọi x)

vậy x^2-x+1>0 với mọi x thuộc R.

27 tháng 12 2017

Ta có: x2 - x +1= (x2-x+\(\dfrac{1}{4}\))+\(\dfrac{3}{4}\)

= (x-\(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\)

Vì (x - \(\dfrac{1}{2}\))2 >= 0 với mọi x

nên (x - \(\dfrac{1}{2}\))2 + \(\dfrac{3}{4}\) > 0 với mọi x (đpcm)