K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.

- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).

- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y

Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x

⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy

⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.

Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54

Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)

⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2

Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3

Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

27 tháng 3 2019

\(2\left(x^2+1\right)+y^2=2y\left(x+1\right)\)

\(\Leftrightarrow2x^2+2+y^2-2y\left(x+1\right)=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y\left(x+1\right)+x^2-2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2-2y\left(x+1\right)+y^2+x^2-2x+1=0\)

\(\Leftrightarrow\left(x+1-y\right)^2+\left(x-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1-y=0\\x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=x+1\\x=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy x = 1 và y = 2

4 tháng 4 2017

Câu 2/ 

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)

Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)

Xét \(x^2,y^2,z^2\ge1\)

Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)

\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)

\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)

Dấu = xảy ra  khi \(x^2=y^2=z^2=1\)

\(\Rightarrow\left(x,y,z\right)=?\)

Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có

\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)

\(\Leftrightarrow x^4=3\left(l\right)\)

Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)

4 tháng 4 2017

Bài 2/

Ta có:  \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)

Vậy phương trình không có nghiệm nguyên dương.

3 tháng 6 2020

\(3^x=\left(y+1\right)^2-1=\left(y+2\right).y\Rightarrow y+2=3^q;y=3^p\left(p+q=x;p< q\right)\)

\(\text{mà:}UCLN\left(y+2;y\right)\le2< 3\text{ do đó:}y=1\Leftrightarrow x=1\left(\text{thỏa mãn}\right)\)