K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

Bài này cô mk dạy phải chứng minh thẳng hàng, không đc ra ngay nếu không sẽ mất điểm đó bạn.

8 tháng 3 2018

a) tta có góc HBD=góc ABC ( đối đỉnh )

         góc KCE=góc ACB ( đối đỉnh )

    mà góc ABC=góc ACB ( tam giác ABC cân )

suy ra góc HBD=gócKCE

xét tam giác HBD và KCE có :

HBD=KCE

BHD=CKE (=90 độ )

BD=CE

=) tam giác HBD=KCE

=)HB=CK

b) ta có góc AHB=ACK ( = 180* - góc ABC )

xét tam giác AHB và tam giác AKC có

góc AHB=gócAKC

HB=CK

AB=AC

suy ra tam giác AHB= tam giác AKC

=) góc AHK = góc AKC

c) ta có HD//KE ( cùng vuông vs BC )

mà HD=KE ( tg HBD=tgKCE )

suy ra HKED là hình bình hành 

=) HK//DE

d) ta có góc HAD=góc KAE ( tg AHB=tgAKC )

=) góc HAD+BAC=góc KAE+BAC

=) góc HAE= góc KAD

do AB=AC ; BD=CE =) AB+BD=AC+CE

=) AD=AE

xét tg AHE và tg AKD có

góc HAE=góc KAD

AH=AK ( tg AHB=tg AKC )

AE=AD

suy ra tg AHE = tg AKD 

e) do HKED là hình bình hành ; HK vuông vs HD

=) HKED là hình chữ nhật

mà  I là gđ của 2 đường chéo HE và DK

suy ra ID=IE

xét tg AID và tg AIE có

AD=AE

ID=IE

chung AI

suy ra tg AID=tg AIE

=) góc DAI = góc EAI

=) AI là phân giác goc DAE

mà tg DAE cân tại A

suy ra AI là đường cao tg DAE

=) AI vuông vs DE

11 tháng 4 2016

a, ta có : góc HBD = góc ABC ( đối đỉnh ), góc KCE = góc ACB (đối đỉnh )

mà ABC = ACB ( tam giác ABC cân ) --> góc HBD = góc KCE

Xét tam giác HBD và tam giác KCE có : góc BHD = góc CKE = 90 độ 

                                                            góc HBD = góc KCE (cmt) ; BD = CE 

                                           --> tam giác HBD = KCE ( cạnh huyền góc nhọn ) --> BH = CK.

b. Có AB = AC , BD = CE --> AB + BD = AC + CE hay AD= AE

Xét tam giác AHD và tam giác AKE có :

HD = KE ( tam giác HBD = KCE)

góc ADH = góc AEK( tam giác HBD = KCE )

AD = AE 

--> tam giác AHD = AKE ( cgc)--> AH = AK --> tam giác AHK cân tại A -->góc AHB = góc AKC.

c.Ta có : tam giác ABC cân --> góc ABC = góc ACB = \(\frac{180^o-gócBAC}{2}\) 

        tam giác ADE cân ( AD = AE) --> góc ADE = góc AED \(\frac{180^0-BAC}{2}\)

----> góc ABC = góc ADE  --> HK // DE.

d. Có : góc HAD = góc KAE ( tam giác AHD = AKE) --> góc HAD + góc BAC = góc KAE + góc BAC hay góc HAE = góc KAD 

Xét tam giác AHE và tam giác AKD có: 

AD = AE 

góc HAE = góc KAD(cmt) 

AH = AK (cmt)

--> tam giác AHE = tam giác AKD (cgc)

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB

12 tháng 10 2019

Bài 3:

Xét 2 \(\Delta\) \(AMO\)\(BNO\) có:

\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)

\(OA=OB\) (vì O là trung điểm của \(AB\))

\(AM=BN\left(gt\right)\)

=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)

=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)

\(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)

=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)

=> \(M,O,N\) thẳng hàng. (1)

Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)

=> \(OM=ON\) (2 cạnh tương ứng) (2)

Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)

Bài 4:

Chúc bạn học tốt!