Cho x, y, z > 0 và x + y + z = 1. Chứng minh x + y > 16xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(x+y\right)=\left(x+y+z\right)^2\left(x+y\right)\)
\(\ge4\left(x+y\right)^2z\ge16xyz\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}}\)
Nếu x+y+z=1 sẽ đúng hơn
Với x,y là số dương bạn dễ dàng chứng minh: (x+y)2 \(\ge\) 4xy
Tương tự vậy, ta có : (x+y+z)2 =[(x+y)+z]2 \(\ge\) 4(x+y)z
\(\Rightarrow\) 1 \(\ge\) 4(x+y)z (x+y+z=1)
\(\Rightarrow\) x+y \(\ge\) 4(x+y)2 z
Mà (x+y)2 \(\ge\) 4xy (cmt)
\(\Rightarrow\) x+y \(\ge\) 4.4xyz \(\ge\) 16xyz
Dấu "=" xảy ra khi x+y+z=1 , x+y=z và x=y
\(\Leftrightarrow\) x+y = z = \(\frac{1}{2}\) và x=y
\(\Leftrightarrow\) x=y=\(\frac{1}{4}\) và z=\(\frac{1}{2}\)
Xét hiệu: (x+y)(y+z)(z+x)-8xyz=0
(=) (x+y)>=2√xy
(y+z)>=2√yz
(z+x)>=2√zx
(=) (x+y)(y+z)(z+x)>=8√x^2 y^2 z^2
(=) (x+y)(y+z)(x+z)>=8|x| |y| |z|
(=) ( x+y)(y+z)(z+x)>= 8xyz
tham khảo [Toán 12] Chứng minh bất đẳng thức: $x^3+y^3+z^3 \ge x+y+z$
lỗi link ấy =)) bạn vào thống kê hỏi đáp của mình để xem link nhé