K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Số dữ và có cái vô nghiệm ... câu này nhìn qua con làm thôi.

a, \(5x^2-x+4=0\)

Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)

Nên phương trình vô nghiệm 

b, \(x^2+3x-2=0\)

Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)

Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)

a, \(5x^2-x+4=0\)

Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)

Nên phương trình vô nghiệm 

b, \(x^2+3x-2=0\)

Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)

Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)

12 tháng 3 2022

Bài 2 : 

a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi x = 2 

b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)

Dấu ''='' xảy ra khi x = -1 

12 tháng 3 2022

 Bài 1 : 

a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)

b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)

c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

2 tháng 3 2023

a) `3x+5 =0`

`3x=-5`

`x=-5/3`

`b) -4x+8=0`

`-4x =-8`

`x=2`

`c) 3x -6=0`

`3x=6`

`x=2`

`d)x^2 +x =0`

`x(x+1) =0`

`=>[(x=0),(x=-1):}`

`e) x^2 -4 =0`

`x^2 =4`

`=> x = +-2`

`f) x^3 -27 =0`

`x^3 =27`

`=> x=3`

`g) 3x^2 +4 =0`

`3x^2 =-4`

`x^2 =-4/3(vô-lí)`

=> Đa thức ko có nghiệm

h) `x^3 -4x =0`

`x(x^2 -4) =0`

`=>[(x=0),(x^2=4 => x=+-2):}`

i) `2x^3 -32x =0`

`2x(x^2 -16)=0`

`=>[(2x=0),(x^2=16):}`

`=>[(x=0),(x=+-4):}`

b: 1/2x-4=0

=>1/2x=4

hay x=8

a: x+7=0

=>x=-7

e: 4x2-81=0

=>(2x-9)(2x+9)=0

=>x=9/2 hoặc x=-9/2

g: x2-9x=0

=>x(x-9)=0

=>x=0 hoặc x=9

8 tháng 4 2022

a)\(x+7=0=>x=-7\)

b)\(\dfrac{1}{2}x-4=0=>\dfrac{1}{2}x=4=>x=8\)

c)\(-8x+20=0=>-8x=-20=>x=\dfrac{5}{2}\)

d)\(x^2-100=0=>x^2=100=>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)

a: x+7=0

nên x=-7

b: x-4=0

nên x=4

c: -8x+20=0

=>-8x=-20

hay x=5/2

d: x2-100=0

=>(x-10)(x+10)=0

=>x=10 hoặc x=-10

8 tháng 4 2022

a) x +7 =0

=>x = -7

b) x - 4 =0=>x = 4

c) -8x + 20 = 0 =>-8x =-20 =>\(x=-\dfrac{20}{-8}=\dfrac{5}{2}\)

d)\(x^2-100=0=>x^2=100>\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{6}\Leftrightarrow A=5x^2-6x+1-1=5x^2-6x\)

\(A=5\left(x^2-2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{9}{5}=5\left(x-\dfrac{3}{5}\right)^2-\dfrac{9}{5}\ge-\dfrac{9}{5}\\ A_{min}=-\dfrac{9}{5}\Leftrightarrow x=\dfrac{3}{5}\left(1\right)\)

Với \(x< \dfrac{1}{6}\Leftrightarrow A=5x^2+6x-1-1=5x^2+6x-2\)

\(A=5\left(x^2+2\cdot\dfrac{3}{5}x+\dfrac{9}{25}\right)-\dfrac{19}{5}=5\left(x+\dfrac{3}{5}\right)^2-\dfrac{19}{5}\ge-\dfrac{19}{5}\\ A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow A_{min}=-\dfrac{19}{5}\Leftrightarrow x=-\dfrac{3}{5}\)

5 tháng 10 2021

Với \(x\ge\dfrac{1}{3}\Leftrightarrow B=9x^2-6x-4\left(3x-1\right)+6=9x^2-18x+10\)

\(B=9\left(x^2-2x+1\right)+1=9\left(x-1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=1\left(1\right)\)

Với \(x< \dfrac{1}{3}\Leftrightarrow B=9x^2-6x+4\left(3x-1\right)+6=9x^2+6x+2\)

\(B=\left(9x^2+6x+1\right)+1=\left(3x+1\right)^2+1\ge1\\ B_{min}=1\Leftrightarrow x=-\dfrac{1}{3}\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow B_{min}=1\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

b: \(\Delta=2^2-4\cdot1\cdot1=0\)

Do đó: Tam thức này dương khi x khác -1; bằng 0 khi x=-1

a: \(\Delta=3^2-4\cdot\left(-5\right)\cdot\left(-1\right)=9-20=-11< 0\)

Do đó: Tam thức này luôn âm với mọi x

c: \(\Delta=1^2-4\cdot1\cdot\left(-2\right)=9\)

Do đó: Tam thức này âm khi -2<x<1

Bằng 0 khi x=-2 hoặc x=1

Dương khi x<-2 hoặc x>1

4:

a: f(x)=0

=>-x-4=0

=>x=-4

b: g(x)=0

=>x^2+x+4=0

Δ=1^2-4*1*4=1-16=-15<0

=>g(x) ko có nghiệm 

c: m(x)=0

=>2x-2=0

=>x=1

d: n(x)=0

=>7x+2=0

=>x=-2/7

a: Ta có: \(A=x^2+3x+4\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)