tìm Min P = căn(x+2) + căn(2-x) - căn(4-x^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{\left(\dfrac{1}{2}-x\right)^2+\left(\dfrac{\sqrt{11}}{2}\right)^2}+\sqrt{\left(\dfrac{1}{2}+x\right)^2+\left(\dfrac{\sqrt{11}}{2}\right)^2}\)
\(\ge\sqrt{\left(\dfrac{1}{2}-x+\dfrac{1}{2}+x\right)^2+\left(\dfrac{\sqrt{11}}{2}+\dfrac{\sqrt{11}}{2}\right)^2}\)
\(=\sqrt{12}\)
"=" xảy ra khi x = 0
áp dụng BĐT C-S dạng engel : A >/ x+y+z
áp dụng BĐT AM-GM x+y+z >/ căn xy + căn yz + căn zx
=>minA = 1
\(E=\sqrt{x^2+2019}\ge\sqrt{2019}\) vậy min của E=\(\sqrt{2019}\)
dấu ''='' xảy ra khi và chỉ khi x=0
\(F=\sqrt{x^2+x+4}=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{15}{4}}\ge\sqrt{\frac{15}{4}}\)
vậy min của F=\(\sqrt{\frac{15}{4}}\)
dấu ''='' xảy ra khi và chỉ khi x=-1/2
mình cũng ko biết có đúng ko nếu sai bạn thông cảm
cậu cho mk xin link facebook của jonathan galindo đi rồi mk sẽ trả lời câu hỏi của cậu
\(\frac{\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}}{\sqrt{x+y+z}}\)
ĐK: \(-2\le x\le2\)
Đặt: \(\sqrt{x+2}+\sqrt{2-x}=t>0\)
=> \(t^2=\left(\sqrt{x+2}+\sqrt{2-x}\right)^2\le2\left(x+2+2-x\right)=8\)
=> \(0< t\le2\sqrt{2}\)
Ta có: \(t^2=\left(\sqrt{x+2}+\sqrt{2-x}\right)^2=x+2+2-x+2\sqrt{4-x^2}\)
=> \(\sqrt{4-x^2}=\frac{t^2-4}{2}\)
Ta có: \(P=t-\frac{t^2-4}{2}=\frac{\left(t+2\sqrt{2}-2\right)\left(2\sqrt{2}-t\right)}{2}+2\sqrt{2}-2\ge2\sqrt{2}-2\)
=> min P = \(2\sqrt{2}-2\) tại \(t=2\sqrt{2}\)khi đó x = 0
Vậy:...
em cảm ơn ạ