K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

chưa học nên ko biết

27 tháng 11 2024

Ngáo đá

23 tháng 1 2020

Giả sử có các số nguyên x,y,z sao cho \(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019^{2020}\)

\(\Leftrightarrow\left|x-y\right|+\left|y-z\right|+\left|z-x\right|+x-x+y-y+z-z=2019^{2020}\)

\(\Leftrightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x=2019^{2020}\)

Ta sẽ chứng minh: \(\left|a\right|+a\)luôn chẵn với mọi a

+) Nếu \(a\ge0\Rightarrow\left|a\right|=a\Rightarrow\left|a\right|+a=2a\left(Đ\right)\)

+) Nếu \(a< 0\Rightarrow\left|a\right|=-a\Rightarrow\left|a\right|+a=0\left(Đ\right)\)

Vậy \(\left|x-y\right|+x-y,\left|y-z\right|+y-z,\left|z-x\right|+z-x\)luôn chẵn

\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-x\right|+z-x\)luôn chẵn

Mà \(2019^{2020}\)lẻ nên điều quả sử là sai

Vậy không có x,y,z nguyên để \(\left|x-y\right|+\left|y-z\right|+\left|z-x\right|=2019^{2020}\)

10 tháng 3 2017

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

mình chưa học