\(174^{2n-1}+1212\cdot1037^{2n-1}\)chia hết cho 3633 (n thuộc N*)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.a)n^5+1⋮n^3+1
⇒n^2.(n^3+1)-n^2+1⋮n^3+1
⇒1⋮n^3+1
⇒n^3+1ϵƯ(1)={1}
ta có :n^3+1=1
n^3=0
n=0
Vậy n=0
b)n^5+1⋮n^3+1
Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0
Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!
c) \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
\(=-5n\)Vì n nguyên
\(\Rightarrow-5n⋮5\left(đpcm\right)\)
a) \(\left(2n+3\right)^2-9\)
\(=\left(2n+3-3\right)\left(2n+3+3\right)\)
\(=2n\left(2n+6\right)\)
\(=4n\left(n+3\right)\)
Do \(n\in Z\Rightarrow n+3\in Z\)
\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)
a) (n+2) \(⋮\) (n-1)
vì (n-1)\(⋮\) (n-1)
=>(n+2)-(n-1)\(⋮\left(n-1\right)\)
=>(n+2-n+1)\(⋮\) (n-1)
=> 3\(⋮\) (n-1)
=>(n-1)\(\in\) Ư(3) = { \(\pm\)1,\(\pm\)3}
ta có bảng
n-1 | -1 | 1 | -3 |
3 |
n | 0 | 2 | -2 | 4 |
loại |
vậy n\(\in\) { 0;2;4}
b) \(\left(2n+7\right)⋮\left(n+1\right)\)
vì\(\left(n+1\right)⋮\left(n+1\right)\)
=>\(2\left(n+1\right)⋮\left(n+1\right)\)
=> \(\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7\right)-\left(2n+2\right)⋮\left(n+1\right)\)
=>\(\left(2n+7-2n-2\right)⋮\left(n+1\right)\)
=>\(5⋮\left(n+1\right)\)
=> \(\left(n+1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
TA CÓ BẢNG
n+1 | -5 | -1 | 1 | 5 |
n | -6 | -2 | 0 | 4 |
loại | loại |
vậy \(n\in\left\{0;4\right\}\)
a) n+2 thuộc Ư(20) = {-1,-2,-4,-5,-10,-20,1,2,4,5,10,20}
Ta có bảng :
n+2 | -1 | -2 | -4 | -5 | -10 | -20 | 1 | 2 | 4 | 5 | 10 | 20 |
n | -3 | -4 | -6 | -7 | -12 | -22 | -1 | 0 | 2 | 3 | 8 | 18 |
Vậy n = {-22,-12,-7,-6,-4,-3,-1,0,2,3,8,18}
b) 2n+3 thuộc Ư(16) = {-1,-2,-4,-8,-16,1,2,4,8,16}
Ta có bảng :
2n+3 | -1 | -2 | -4 | -8 | -16 | 1 | 2 | 4 | 8 | 16 |
n | -2 | \(\frac{-5}{2}\) | \(\frac{-7}{2}\) | \(\frac{-11}{2}\) | \(\frac{-19}{2}\) | -1 | \(\frac{-1}{2}\) | \(\frac{1}{2}\) | \(\frac{5}{2}\) | \(\frac{13}{2}\) |
Vậy ...
c) => n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n = {-7,-4,-3,-2,0,1,2,5}
d) => n-2 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n-2 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 1 | 0 | -1 | -4 | 3 | 4 | 5 | 8 |
Vậy n= {-4,-1,0,1,3,4,5,8}
e) =>2n+1 thuộc Ư(14)={-1,-2,-7,-14,1,2,7,14}
Ta có bảng :
2n+1 | -1 | -2 | -7 | -14 | 1 | 2 | 7 | 14 |
n | -1 | \(\frac{-3}{2}\) | -4 | \(\frac{-15}{2}\) | 0 | \(\frac{1}{2}\) | 3 | \(\frac{13}{2}\) |
f) =>2n-1 thuộc Ư(6)= {-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
2n-1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | 0 | \(\frac{-1}{2}\) | -1 | \(\frac{-5}{2}\) | 1 | \(\frac{3}{2}\) | 2 | \(\frac{7}{2}\) |
Vậy ...