Tìm y biết:
y x 4 + y x 2 + y = 217
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`y xx1,7+y xx2,1=9,12`
`y xx(1,7+2,1)=9,12`
`y xx3,8=9,12`
`y=9,12:3,8`
`y=2,4`
\(y\times1,7+y\times2,1=9,12\)
\(y\times\left(1,7+2,1\right)=9,12\)
\(y\times3,8=9,12\)
\(y=9,12:3,8\)
\(y=2,4\)
`y : 5/11 = 2/5 : 2`
`=> y : 5/11 = 2/5 xx1/2`
`=> y : 5/11 = 2/10`
`=> y : 5/11 =1/5`
`=> y= 1/5 xx 5/11`
`=> y= 5/55`
`=> y=1/11`
\(x^2+y^2+z^2=217\left(1\right)\)
Vì\(\hept{\begin{cases}\frac{x}{y}=\frac{2}{3}\\\frac{x}{z}=\frac{3}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{x}{3}=\frac{z}{5}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{6}=\frac{y}{9}\\\frac{x}{6}=\frac{z}{10}\end{cases}}}\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{9}=\frac{z}{10}=k\Rightarrow\hept{\begin{cases}x=6k\\y=9k\\z=10k\end{cases}\left(2\right)}\)
Thay (2) vào (1) ta được:
\(\left(6k\right)^2+\left(9k\right)^2+\left(10k\right)^2=217\)
\(\Leftrightarrow36k^2+81k^2+100k^2=217\)
\(\Leftrightarrow217k^2=217\)
\(\Leftrightarrow k^2=1\)
\(\Leftrightarrow k=\pm1\)
TH1: Thay k=1 vào (2) ta được:
\(\hept{\begin{cases}x=1.6=6\\y=1.9=9\\z=1.10=10\end{cases}}\)
TH2: Thay k=-1 vào (2) ta được:
\(\hept{\begin{cases}x=-1.6=-6\\y=-1.9=-9\\z=-1.10=-10\end{cases}}\)
Vậy \(\left(x,y,z\right)=\left\{\left(6;9;10\right);\left(-6;-9;-10\right)\right\}\)
Ta có:
\(\frac{x}{y}=\frac{2}{3}\)
\(\Rightarrow\)\(\frac{x}{2}=\frac{y}{3}\)
\(\Rightarrow\)\(\frac{x}{6}=\frac{y}{9}\)
\(\Rightarrow\)\(\frac{x^2}{36}=\frac{y^2}{81}\)(1)
\(\frac{x}{z}=\frac{3}{5}\)
\(\Rightarrow\)\(\frac{x}{3}=\frac{z}{5}\)
\(\Rightarrow\)\(\frac{x}{6}=\frac{z}{10}\)
\(\Rightarrow\)\(\frac{x^2}{36}=\frac{z^2}{100}\)(2)
Từ (1) và (2)
\(\Rightarrow\)\(\frac{x^2}{36}=\frac{z^2}{100}=\frac{y^2}{81}\)
\(\Rightarrow\)\(\frac{x^2}{36}=\frac{z^2}{100}=\frac{y^2}{81}=\frac{x^2+y^2+z^2}{217}=1\)
\(\Rightarrow\)\(\hept{\begin{cases}\frac{x^2}{36}=1\\\frac{y^2}{81}=1\\\frac{z^2}{100}=1\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}x^2=36\\y^2=81\\z^2=100\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}x=6\\y=9\\z=10\end{cases}}\)
Vậy....
y x 4 + y x 2 + y = 217
y x (4 + 2 + 1) = 217
y x 7 = 217
y = 217 : 7
y = 31
y x 4 + y x 2 + y = 217
y x ( 4 + 2 + 1 ) = 217
y x 7 = 217
y = 217 : 7
y = 31.
#Y/n