K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 6 2020

\(f\left(x\right)=\int sin^4xdx=\int\left(\frac{1}{2}-\frac{1}{2}cos2x\right)^2dx\)

\(=\frac{1}{4}\int\left(1-2cos2x+cos^22x\right)dx=\frac{1}{4}\int\left(\frac{3}{2}-2cos2x+\frac{1}{2}cos4x\right)dx\)

\(=\frac{1}{4}\left(\frac{3}{2}x-sin2x+\frac{1}{8}sin4x\right)+C\)

\(f\left(0\right)=0\Rightarrow\frac{1}{4}\left(0-0+0\right)+C=0\Rightarrow C=0\)

\(\Rightarrow\int\limits^{\frac{\pi}{2}}_0f\left(x\right)dx=\frac{1}{4}\int\limits^{\frac{\pi}{2}}_0\left(\frac{3}{2}x-sin2x+\frac{1}{8}sin4x\right)dx\)

\(=\frac{1}{4}\left(\frac{3}{4}x^2+\frac{1}{2}cos2x-\frac{1}{32}cos4x\right)|^{\frac{\pi}{2}}_0\)

\(=\frac{3\pi^2-16}{64}\)

18 tháng 1 2018

Chọn C.

Dựa vào đồ thị hàm số f ' ( x )  suy ra BBT của hàm số y = f(x)

 

Khẳng định 1, 2, 5 đúng, khẳng định 4 sai.

Xét khẳng định 3: Ta có:

f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) ⇒ f ( 3 ) - f ( 0 ) = f ( 1 ) - f ( 2 ) > 0  

Do đó f ( 3 ) > f ( 0 ) ⇒  Vậy khẳng định 3 đúng.

NV
10 tháng 4 2021

1. Áp dụng quy tắc L'Hopital

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x+1}-1}{f\left(0\right)-f\left(x\right)}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2\sqrt{x+1}}}{-f'\left(0\right)}=-\dfrac{1}{6}\)

2.

\(g'\left(x\right)=2x.f'\left(\sqrt{x^2+4}\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\f'\left(\sqrt{x^2+4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x^2+4}=1\\\sqrt{x^2+4}=-2\end{matrix}\right.\) 

2 pt cuối đều vô nghiệm nên \(g'\left(x\right)=0\) có đúng 1 nghiệm

15 tháng 11 2018

2 tháng 11 2019

Chọn đáp án C.

19 tháng 11 2018

Chọn C.

Đặt  u   =   G ( x ) d v   =   f ( x ) d x ⇒ d u   =   G ( x ) ' d x   =   g ( x )   d x v   =   ∫ f ( x ) d x   =   F ( x )

Suy ra: I =  G ( x ) F ( x ) 2 0   - ∫ 0 2 F ( x ) g ( x ) d x  

= G(2)F(2) – G(0)F(0) – 3 = 1 – 0 – 3 = -2.

6 tháng 7 2019

Đáp án C

5 tháng 7 2017

2 tháng 11 2018

Đáp án C

Cả hai khẳng định đều sai vì thiếu điều kiện hàm số liên tục.

 

30 tháng 11 2017

Đáp án A

Phương pháp:

Dựa vào khái niệm cực trị và các kiến thức liên quan.

Cách giải:

(1) chỉ là điều kiện cần mà không là điều kiện đủ.

VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.

(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.

(3) hiển nhiên sai.

Vậy (1), (2), (3): sai; (4): đúng

11 tháng 10 2017

Chọn B