K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 hàm số y = ax^4+bc^2+c(a#0) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng a . a>0,b<0 ,c \(\le\) 0 B a<0,b,0,c<0 C a>0,b\(\ge\) 0,c>0 D a>0,b\(\ge\)0,c,0 2 đồ thị nào dưới đây có tiệm cận ngang là đường thẳng y=1 A y=1 B y=\(\frac{1-x}{2-x}\) C y= \(\frac{x-1}{x^2+1}\) D y=\(\frac{1}{x-1}\) 3 tìm một nguên hàm F(x) của hàm số f(x) =\(\frac{x^2-1}{x^2}\) biết F(1)=0 4 cho lăng trụ đứng ABCD .\(A^,B^,C^,D^,\) có...
Đọc tiếp

1 hàm số y = ax^4+bc^2+c(a#0) có đồ thị như hình vẽ bên. Mệnh đề nào sau đây đúng

a . a>0,b<0 ,c \(\le\) 0 B a<0,b,0,c<0 C a>0,b\(\ge\) 0,c>0 D a>0,b\(\ge\)0,c,0

2 đồ thị nào dưới đây có tiệm cận ngang là đường thẳng y=1

A y=1 B y=\(\frac{1-x}{2-x}\) C y= \(\frac{x-1}{x^2+1}\) D y=\(\frac{1}{x-1}\)

3 tìm một nguên hàm F(x) của hàm số f(x) =\(\frac{x^2-1}{x^2}\) biết F(1)=0

4 cho lăng trụ đứng ABCD .\(A^,B^,C^,D^,\) có ABCD là hình hoi cạnh 2a, ABD=\(60^0\) , \(A^,B^,BA\) là hình vuông . Tính thể tích lăng trụ ABCD.\(A^,B^,C^,D^,\)

5Tính diện tích toàn phẩn của hình trụ có thiết diện qua trục là hình vuông cạnh 2a

6 Tìm số thực x,y thỏa (x+y)+(2x-y)i=3-6i

7 trong ko gian Oxyz, cho điểm I(1;2;4) và mặt phẳng (P) :2x+2y+z-1=0 . Mặt cầu tâm I và tiếp xúc với mp (P) có phuong trình là

8 tìm số gaio điểm của đồ thị hàm số y=x^4-3x^2-5 và trục hoành

A 2 B. 3 C. 1 D.4

9 Đặt t =5^x hì bất phương trình \(5^{2x}-3.5^{x+2}+32< 0\) trở thành bất pt nào

A \(t^2-75t+32< 0\) B \(t^2-6t+32< 0\) C \(T^2-3t+32< 0\) D \(t^2-16t+32< 0\)

10 trong ko gian oxyz, cho điểm A(1;-1;3),B(-3;0;-4) .Phương trình nào sau đây là pt chính tắc của đường thẳng qua A vÀ B

A \(\frac{X+3}{4}=\frac{Y}{-1}=\frac{Z-4}{3}\) B\(\frac{X+3}{1}=\frac{Y}{-1}=\frac{Z+4}{3}\) C\(\frac{X+3}{4}=\frac{Y+1}{-1}=\frac{Z+4}{7}\) D \(\frac{X+3}{-4}=\frac{Y-1}{-1}=\frac{Y+3}{7}\)

11 trong ko gian Oxyz , cho 2 vecto \(\overline{a}\left(1,m,-1\right)\),\(\overline{b}\left(2;1;3\right)\). tìm m để \(\overline{a}\perp\overline{b}\)

3
NV
14 tháng 6 2020

9.

\(5^{2x}-3.5^{x+2}+32< 0\)

\(\Leftrightarrow\left(5^x\right)^2-75.5^x+32=0\)

Đặt \(5^x=t\Rightarrow t^2-75t+32< 0\)

10.

\(\overrightarrow{BA}=\left(4;-1;7\right)\Rightarrow\) đường thẳng AB nhận \(\left(4;-1;7\right)\) là 1 vtcp

Đáp án C là đáp án duy nhất đúng về vtcp, nhưng lại sai về điểm mà đường thẳng đi qua, nên cả 4 đáp án đều sai :)

Pt chính tắc đúng phải là: \(\frac{x+3}{4}=\frac{y}{-1}=\frac{z+4}{7}\)

11.

\(\overrightarrow{a}\perp\overrightarrow{b}\Leftrightarrow\overrightarrow{a}.\overrightarrow{b}=0\)

\(\Leftrightarrow2+m-3=0\Rightarrow m=1\)

NV
14 tháng 6 2020

5.

\(R=a;h=2a\)

\(\Rightarrow S=2\pi R.h=4\pi a^2\)

6.

\(\left(x+y\right)+\left(2x-y\right)i=3-6i\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)

7.

\(R=d\left(I;\left(P\right)\right)=\frac{\left|2.1+2.2+4-1\right|}{\sqrt{2^2+2^2+1^2}}=3\)

Pt mặt cầu: \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-4\right)^2=9\)

8.

\(x^4-3x^2-5=0\)

Đặt \(x^2=t\ge0\Leftrightarrow t^2-3t-5=0\) (1)

\(t_1t_2=-5< 0\Rightarrow\left(1\right)\) có 2 nghiệm trái dấu => có đúng 1 nghiệm dương => pt đã cho có 2 nghiệm pb

\(\Rightarrow\) Đồ thị hs cắt trục hoành tại 2 điểm

6 tháng 7 2021

- Thay tọa độ điểm B và C vào hàm số ta được :

\(\left\{{}\begin{matrix}4a+b=0\\-a+b=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=-\dfrac{4}{5}\\b=\dfrac{16}{5}\end{matrix}\right.\)

Vậy ...

b, Thay a, b vào ta được hàm số : \(y=-\dfrac{4}{5}x+\dfrac{16}{5}\)

\(\Rightarrow\tan\left(180-a\right)=\dfrac{4}{5}\)

\(\Rightarrow a=141^o21\)

Vậy ...

6 tháng 7 2021

sao tan(180-a) lại bằng 4/5 vậy ạ

31 tháng 1 2021

\(y'=\dfrac{\left(3x^2+2x+1\right)'\left(x-2\right)-\left(x-2\right)'\left(3x^2+2x+1\right)}{\left(x-2\right)^2}\)

\(y'=\dfrac{\left(6x+2\right)\left(x-2\right)-3x^2-2x-1}{\left(x-2\right)^2}\)

\(y'=\dfrac{6x^2-10x-4-3x^2-2x-1}{\left(x-2\right)^2}=\dfrac{3x^2-12x-5}{\left(x-2\right)^2}=\dfrac{12x^2-48x-20}{\left(2x-4\right)^2}\)

\(\Rightarrow a^2-b^2+c^2=12^2-48^2+20^2=...\)

1 tháng 12 2021

\(a,\Leftrightarrow a+3=4\Leftrightarrow a=1\\ \Leftrightarrow y=x+3\\ c,\text{PT hoành độ giao điểm: }x+3=2x+5\Leftrightarrow x=-2\Leftrightarrow y=1\Leftrightarrow A\left(-2;1\right)\\ \text{Vậy tọa độ giao điểm 2 đths là }A\left(-2;1\right)\)

1 tháng 12 2021

làm hết luôn à

 

22 tháng 12 2021

a: Thay x=-2 và y=3 vào (d), ta được:

-2a=3

hay a=-3/2

23 tháng 12 2018

a ) Ta có : f(2) = 5 

\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(2\right)\\\text{ax}-3=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\a.2-3=5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=2\\a=4\end{cases}}\)

Vậy a = 4 

b ) Ta có : f(0) = 3

\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(0\right)\\\text{ax}+b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\a.0+b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\b=3\end{cases}}\) ( 1 ) 

Ta có : f ( 1 ) = 4 

\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=f\left(1\right)\\\text{ax}+b=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\a.1+b=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\a+b=4\end{cases}}\) ( 2 ) 

Thay b = 3 ở ( 1 ) vào a+b=4 ở ( 2 ) ta được : a + 3 = 4    

                                                                         a       = 1 

Vậy a = 1 ; b = 3 

11 tháng 12 2015

Theo de ta co:

f(0) = a.02+b.0+c = c =1

f(1)=a.12+b.1+c = a+b+1 = 2  => a+b = 1

f(2)=a.22+b.2+c = 4a+2b+1=2(2a+b)+1 = 4  => 2(2a+b) = 3  => 2a+b = 3/2 => b = 3/2 - 2a

Thay b=3/2 - 2a vao bieu thuc: a+b=1  ta duoc:

a+3/2-2a = 1

3/2-a= 1

=> a = 3/2 - 1 = 1/2

Suy ra: b = 3/2 - 2.1/2  = 1/2

Vay: a = 1/2   ;    b=1/2       ;      c=1