K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 6 2020

\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)+10=-y^2\)

\(\Leftrightarrow\left(x+y\right)^2+7\left(x+y\right)+10\le0\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+y+5\right)\le0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Leftrightarrow-4\le x+y+1\le-1\)

\(A_{max}=-1\) khi \(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

\(A_{min}=-4\) khi \(\left\{{}\begin{matrix}x=-5\\y=0\end{matrix}\right.\)

3 tháng 1 2021

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)

Ta có:

\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)

Ta có:

P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)

P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)

=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)

Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)

Ta có : 

P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)

Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)

<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)

=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)

\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)

Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...

Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)

<=> x=-y=\(\dfrac{1}{\sqrt{3}}\) 

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)

30 tháng 7 2019

pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)

\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)

\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)

\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)

Dấu "=" tự xét nhé 

27 tháng 5 2018

Từ đề bài \(\Rightarrow4x^2+4y^2+4xy-24x-24y+44=0\)

\(\Leftrightarrow\left(2x+y\right)^2-24x-12y+36+3y^2-12y+12-4=0\)

\(\Leftrightarrow\left(2x+y-6\right)^2+3\left(y-2\right)^2-4=0\)

\(\Leftrightarrow\left(2x+y-6\right)^2=4-3\left(y-2\right)^2\le4\forall x;y\)

\(\Leftrightarrow-2\le2x+y-6\le2\Rightarrow4\le2x+y\le8\)

Do đó \(4\le P\le8\)

9 tháng 10 2017

Lời giải:

Không mất tính tổng quát. Giả sử \(x\geq y\Rightarrow 2x\geq 2017\Rightarrow x\geq 1009\) (do \(x\) nguyên dương)

Thực hiện biến đổi P

\(P=x(x^2+y)+y(y^2+x)=(x^3+y^3)+2xy\)

\(\Leftrightarrow P=(x+y)(x^2-xy+y^2)+2xy\)

\(\Leftrightarrow P=2017(x^2-xy+y^2)+2xy=2017(x+y)^2-6049xy\)

\(\Leftrightarrow P=2017^3-6049xy=2017^3-6049x(2017-x)\)

\(\Leftrightarrow P=6049x^2-6049.2017xy+2017^3\)

Tìm max:

Tiếp tục biến đổi :\(P=6049(x-1)(x-2016)+2017^3-2016.6049\)

Vì \(x\)  nguyên dương \(\Rightarrow x\geq 1\)

\(y\geq 1\Rightarrow x=2017-y\leq 2016\)

Do đó \((x-1)(x-2016)\leq 0\Rightarrow P\leq 2017^3-2016.6049\)

Vậy \((Max) P=2017^3-2016.6049\Leftrightarrow (x,y)=(2016,1)\) và hoán vị

Tìm min: 

Biến đổi \(P=6049(x-1008)(x-1009)+2017^3-1008.1009.6049\)

Vì \(x\geq 1009\Rightarrow (x-1008)(x-1009)\geq 0\), do đó \(P\geq 2017^3-1008.1009.6049\)

Vậy \((Min)P=2017^3-6049.1008.1009\Leftrightarrow (x,y)=(1009,1008)\) và hoán vị.

29 tháng 1 2020

Ta có: \(2\left(x^2+y^2\right)=1+xy\)

\(\Leftrightarrow x^2+y^2=\frac{1+xy}{2}\)

\(P=7\left(x^4+y^4\right)+4x^2y^2\)

\(=7x^4+7y^4+4x^2y^2\)

\(\Rightarrow P=28x^3+28y^3+16xy\)

\(\Leftrightarrow P=0\Leftrightarrow28x^3+28y^3+16xy=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=4\end{cases}}\)

\(\Rightarrow P_{Min}=15\) và \(Max_P=\frac{12}{33}\)

8 tháng 5 2016

A = x +y +1 => A - 1 = x +y.

Từ gt suy ra : (A -1)2 + 7(A -1) + y2 + 10 = 0 => A2 + 5A + 4 + y2 = 0 => A2 + 5A + 4 = - y2 <= 0. Dấu = xảy ra khi y = 0

=> (A +1)(A +4) <= 0 => - 1 <= A <= -4

A = -1 <=> y = 0 và x + y = -1 => y = 0 và x = -1

A = -4 <=> y =0 và x + y = -4 => y = 0 và x = -4

Vậy minA = -1 khi x = -1, y = 0

maxA = -4 khi x = -4, y = 0

6 tháng 9 2016

Ta có : \(\left(x+y\right)^2+7\left(x+y\right)+y^2+10=0\)

\(\Leftrightarrow\left(x+y\right)^2+2\left(x+y\right)+1+5\left(x+y+1\right)+y^2+4=0\)

\(\Leftrightarrow\left(x+y+1\right)^2+5\left(x+y+1\right)+y^2+4=0\)

Đặt t = x+y+1

Suy ra \(t^2+5t+y^2+4=0\)

Xét \(\Delta=25-4\left(4+y^2\right)=9-4y^2\) . Để pt có nghiệm thì \(\Delta\ge0\Rightarrow y^2\le\frac{9}{4}\)

Giả sử pt có hai nghiệm : t1 < t2 . Do đó GTNN của A xảy ra tại t1

Khi đó : \(t_1=\frac{-5-\sqrt{9-4y^2}}{2}\ge\frac{-5-\sqrt{9}}{2}=-4\)

Suy ra \(A\ge-4\) . Vậy Min A = -4 <=> y = 0 => x = -5

7 tháng 9 2016

x, y là 2 số thực dương mà chị ?

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá