A=(1-1/2).(1-1/3). ... .(1-1/2011)
B=3/2.4/3.5/4.6/5. ... .1000/999
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 13/21.2/11 + 13/21.9/11 + 8/21
= (13/21) + (13/21) + (8/21)
= (13 + 13 + 8)/21
= 34/21
B = (1 - 1/5)(1 - 2/5)(1 - 3/5)...(1 - 9/5)
= (4/5)(3/5)(2/5)(1/5)(0/5)(-1/5)(-2/5)(-3/5)(-4/5)
= 0
C = (1 - 1/2)(1 - 1/3)(1 - 1/4)...(1 - 1/50)
= (1/2)(2/3)(3/4)(4/5)...(49/50)
= 1/50
D = (2^2/1.3) * (3^2/2.4) * (4^2/3.5) * (5^2/4.6) * (6^2/5.7)
= (4/3) * (9/8) * (16/15) * (25/23) * (36/35)
= 0.979
a: \(A=\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{2022\cdot2024}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2022}-\dfrac{1}{2024}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{1011}{2024}=\dfrac{1011}{4848}< \dfrac{1}{4}\)
b: \(B=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2013\cdot2015}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2014}{2015}=\dfrac{1007}{2015}< \dfrac{1}{2}\)
Ta có: D\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2005}\right)\)
\(\Leftrightarrow D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2004}{2005}=\dfrac{1.2.3...2004}{2.3.4...2005}=\dfrac{1}{2005}\)
Ta có: \(E=\dfrac{1^2}{1.3}.\dfrac{2^2}{2.4}.\dfrac{3^2}{3.5}...\dfrac{999^2}{999.1000}.\dfrac{1000^2}{1000.1001}=\dfrac{\left(1.2.3.4...1000\right)\left(1.2.3.4...1000\right)}{\left(1.2.3....1000\right)\left(3.4.5....1001\right)}=\dfrac{2}{1001}\)