Chứng Minh
\(\frac{\sin20^o.\cos70^o+\cos^220^o+\sin160^o-1}{\cos200^o.\cos70^o}=\tan20^o\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=2008\left(\sin^220^o+\cos^220^o\right)+\cos70^o-\cos70^o+\frac{\sin20^o}{\cos20}.\frac{sin70}{c\text{os}70}\)
\(=2008+1=2009\)
Sửa: \(A=\dfrac{\cos70^0-\sin\alpha}{\tan60^0-\cot70^0}\)
Vì \(\sin\alpha>\sin20^0\Leftrightarrow\cos70^0-\sin\alpha< \sin20^0-\sin20^0=0\)
Mà \(\tan60^0-\cot70^0=\tan60^0-\tan20^0>0\)
Do đó \(A< 0,\forall20^0< \alpha< 90^0\)
\(S=\frac{\sqrt{3}sin70-cos70}{\sqrt{3}sin70.cos70}=\frac{\frac{\sqrt{3}}{2}sin70-\frac{1}{2}cos70}{\frac{\sqrt{3}}{4}.2sin70.cos70}\)
\(=\frac{sin70.cos30-sin30.cos70}{\frac{\sqrt{3}}{4}sin140}=\frac{sin\left(70-30\right)}{\frac{\sqrt{3}}{4}sin\left(180-40\right)}\)
\(=\frac{sin40}{\frac{\sqrt{3}}{4}sin40}=\frac{4}{\sqrt{3}}\)
a: \(=\left(\cos^215^0+\cos^275^0\right)+\left(\cos^225^0+\cos^265^0\right)+\left(\cos^235^0+\cos^255^0\right)+\cos^245^0\)
=1+1+1+1/2
=3,5
b: \(=\left(\sin^210^0+\sin^280^0\right)-\left(\sin^220^0+\sin^270^0\right)+\left(\sin^230^0\right)-\left(\sin^240^0+\sin^250^0\right)\)
=1-1-1+1/4
=-1+1/4=-3/4
c: \(=\left(\sin15^0-\cos75^0\right)+\left(\sin75^0-\cos15^0\right)+\sin30^0\)
=1/2