Chứng minh rằng:A=n(2n+7)(7n+1) chia hết cho 6 vs mọi n \(\in\) Z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
Lời giải:
* CM $A$ chia hết cho $2$
Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.
Do đó luôn tồn tại 1 trong 2 số là chẵn
$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$
* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:
Nếu $n=3k(k\in\mathbb{Z}$
$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$
$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$
Vậy tóm lại $A\vdots 3(**)$
Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)
\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)
Vì n-2;n-3 là hai số liên tiếp
nên (n-2)(n-3) chia hết cho 2
=>A chia hết cho 2
TH1: n=3k
=>n-3=3k-3 chia hết cho 3
TH2: n=3k+1
=>2n+1=6k+2+1=6k+3 chia hết cho 3
TH3: n=3k+2
=>n+1=3k+3 chia hết cho 3
=>A chia hết cho 6
Vì (7n + 1) - n = 6n + 1 là số lẻ nên trong hai số 7n + 1 và n có đúng một số chẵn \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 2 (1)
Xét 3 TH:
+) n = 3k (k \(\in\) N): Khi đó n \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3
+) n = 3k + 1 (k \(\in\) N): Khi đó 2n + 7 = 2(3k + 1) + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3
+) n = 3k + 2 (k \(\in\) N): Khi đó 7n + 1 = 7(3k + 2) + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3
Từ đó suy ra A = n(2n + 7)(7n + 1) \(⋮\) 3 (2)
Từ (1) và (2) suy ra A \(⋮\) 6 (đpcm)
+) Giả sử n là số chẵn
Nếu n là số chẵn thì n chia hết cho 2
=> n(n+)(2n+1) chia hết cho 2
+) Giả sử n là số lẻ
Nếu n là số lẻ thì n+1 là số chẵn và chia hết cho 2
=> n(n+1)(2n+1) chia hết cho 2
<=> n(n+1)(2n+1) chia hết cho 2 với mọi n thuộc Z (1)
Vì n thuộc Z nên n có dạng 3k;3k+1 và 3k+2
(+) Với n=3k
=> n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+1
=> 2n+1 = 2.(3k+1)+1 = 6k+2+1 = 6k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
(+) Với n=3k+2
=> n+1 = 3k+2+1 = 3k+3 chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3
<=> n(n+1)(2n+1) chia hết cho 3 với mọi n thuộc Z (2)
Từ (1) và (2) => n(n+1)(2n+1) chia hết cho 2.3 ( vì 2 và 3 là hai số nguyên tố cùng nhau )
=> n(n+1)(2n+1) chia hết cho 6
=> ĐPCM
__HT__ Merry Christmas__
Xét n = 3p => A = 3p(6p+7)(21p+1) chia hết cho 3 vì 3p chia hết cho 3.
p chẵn => 3p chia hết cho 6 => A chia hết cho 6
p lẻ => 21p lẻ => 21p + 1 chẵn => A chia hết cho 6
Xét n = 3p+1 => A = (3p+1)(6p+9)(21n+8) chia hết cho 3 vì 6p + 9 chia hết cho 3.
p chẵn => 21n+8 chẵn=> A chia hết cho 6.
p lẻ => 3p+1 chẵn => A chia hết cho 6.
Xét n = 3p+2 => A= (3p+2)(6p+11)(21n+15) chia hết cho 3 vì 21n+15 chia hết cho 3.
p chẵn => 3p + 2 chia hết cho 2 => A chia hết cho 6.
p lẻ => 21p lẻ => 21p + 15 chẵn => A chia hết cho 6.
Vậy A luôn luôn chia hết cho 6.