Chứng minh \(6:\)\(\frac{2}{3}\)\(=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
với mọi a,b,c >=1
chứng minh \(\frac{1}{1+a^6}+\frac{2}{1+b^3}+\frac{3}{1+c^2}\ge\frac{6}{1+abc}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có BĐT phụ với \(x;y;z\ge1\): \(\frac{1}{1+x}+\frac{1}{1+y}\ge\frac{2}{1+\sqrt{xy}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt[6]{xyz^4}}\ge\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Áp dụng:
\(P=\frac{1}{1+a^6}+\frac{1}{1+c^2}+\frac{2}{1+b^3}+\frac{2}{1+c^2}\ge\frac{2}{1+a^3c}+\frac{2}{1+b^3}+\frac{2}{1+c^2}\)
\(P\ge2\left(\frac{1}{1+a^3c}+\frac{1}{1+b^3}+\frac{1}{1+c^2}\right)\ge\frac{6}{1+\sqrt[3]{a^3b^3c^3}}=\frac{6}{1+abc}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.....\frac{2013}{2014}\) (1)
Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\)
Do đó nhân vế với vế, ta được:
\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\)
\(\Rightarrow A^2< \frac{1}{2015}\)
Mặt khác, \(A>\frac{1}{2}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\) (2)
Từ (1) và (2), ta được:
\(A^2>\frac{1}{4}.\left(\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\right)\)
\(\Rightarrow A^2>\frac{1}{4}.\frac{3}{2015}\Rightarrow A^2>\frac{3}{8060}>\frac{1}{4028}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Gọi ƯCLN(12n+1;30n+2) = d
\(\Rightarrow\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\)
\(\Rightarrow\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\)
\(\Rightarrow\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}\)
=> ( 60n + 5 ) - ( 60n + 4 ) \(⋮\) d
=> 1 \(⋮\) d
=> d = 1
Vậy \(\frac{12n+1}{30n+2}\) là phân số tối giản
b) Ta có : \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
.........
\(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\) ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{2+\sqrt{3}}=\sqrt{\frac{1}{2}\left(4+2\sqrt{3}\right)}=\sqrt{\frac{1}{2}}\sqrt{3+2\sqrt{3}+1}=\sqrt{\frac{1}{2}}\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{\frac{1}{2}}.\left(\sqrt{3}+1\right)=\frac{\sqrt{3}}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{\sqrt{6}}{2}+\frac{\sqrt{2}}{2}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) dat A=1+2+22+23+...+299
2.A=2+22+23+24+...+2100
2.A-A= 2+23+24+...+2100-(1+2+22+23+...+299)
A=2100-1
----> 1.3.5.7...197.199<\(\frac{101.102.103....200}{2^{100}-1}\)
Dat B =1.3.5.7...197.199
B=\(\frac{1.3.5.7....197.199...2.4.6.8....200}{2.4.6.8....200}\)
B= \(\frac{1.2.3.4.5....199.200}{2.4.6.8....200}\)
B=\(\frac{1.2.3.4.5......199.200}{2^{100}.\left(1.2.3.4...100\right)}\) ( tu 2 den 200 co 100 so hang nen duoc 2100)
B =\(\frac{101.102.103....200}{2^{100}}\)
---->\(\frac{101.102.103....200}{2^{100}}<\frac{101.102.103....200}{2^{100}-1}\)
ta co : 2100 >2100-1
--->\(\frac{1}{2^{100}}<\frac{1}{2^{100}-1}\)
---> \(\frac{101.102.103...200}{2^{100}}<\frac{101.102.103...200}{2^{100}-1}\)
----> dpcm
b> A= \(\frac{1.3.5.7....2499}{2.4.6.8....2500}\) chon B=\(\frac{2.4.6.8...2500}{3.5.7.9...2501}\)
A.B = \(\frac{1.3.5.7....2499.2.4.6.8...2500}{2.4.6.8...2500.3.5.7.....2499.2501}=\frac{1}{2501}\)
Nhan xet
\(\frac{1}{2}+\frac{1}{2}=1\)
\(\frac{2}{3}+\frac{1}{3}=1\)
vi 1/2 >1/3----> 1/2 <2/3
cm tuong tu ta se co A<B
---> A.A<A.B
---->A2<A.B
===> A2 <\(\frac{1}{2501}<\frac{1}{2500}=\frac{1}{50^2}\)
==> A2<1/502
--> A <1/50
ma 1/50<1/49
nen A<1/49
--> A < 1/72
---> A. (-1) >(-1).1/72
---> -A>-1/72
![](https://rs.olm.vn/images/avt/0.png?1311)
sửa đề : \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)
\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\left(đpcm\right)\)
Ta có:
\(6:\frac{2}{3}=6:2:3=1\)
Vậy \(6:\frac{2}{3}=1\left(đpcm\right)\)
vì 6 : 2 : 3(6 : 3 : 2) cũng được thì kết quả vẫn là 1