K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

\(\Leftrightarrow2x^2+\frac{2}{3}=0\)

\(\Leftrightarrow2x^2=-\frac{2}{3}\)

\(\Leftrightarrow x^2=-\frac{2}{3}:2\)

\(\Leftrightarrow x^2=-\frac{1}{3}\left(ktm\right)\)

vvaayj đa thức trên vô ngiệm

11 tháng 6 2020

Ta có : \(2x^2+\frac{2}{3}=0\)

            \(2x^2=0-\frac{2}{3}\)

            \(2x^2=\frac{-2}{3}\)

          \(x^2=\frac{-2}{3}\div2\)

        \(x^2=\frac{-1}{3}\)

\(\Rightarrow x=\sqrt{\frac{-1}{3}}\)

Bài 1:a) Tìm x, biết: 3.(x - 1) -  (x + 1) = - 1b) Tìm nghiệm của đa thức: f(x) = 2x2 - x Bài 2:Cho đa thức f(x) = 2x2 - 3x + x + 1   ;     g(x) = 3x - 3x3 + 2x2 - 2       ;                                            h(x) = 2x2 + 1a) Tính g(x) - f(x) + h(x)b)Tính f(- 1) - h(1/2)c) Với giá trị nào của x thì f(x) = h(x) Bài 3:Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M...
Đọc tiếp

Bài 1:

a) Tìm x, biết: 3.(x - 1) -  (x + 1) = - 1

b) Tìm nghiệm của đa thức: f(x) = 2x- x

 

Bài 2:

Cho đa thức f(x) = 2x2 - 3x + x + 1   ;     g(x) = 3x - 3x3 + 2x2 - 2       ;

                                            h(x) = 2x2 + 1

a) Tính g(x) - f(x) + h(x)

b)Tính f(- 1) - h(1/2)

c) Với giá trị nào của x thì f(x) = h(x)

 

Bài 3:

Cho tam giác ABC vuông tại A, đường cao AH. Gọi AD là tia phân giác của góc HAC, M là trung điểm của AD. Trên nửa mặt phẳng bờ AC chứa điểm B vẽ tia Ax song song với BC. Trên Ax lấy điểm E sao cho AE = DC

a) Chứng minh tam giác ADC = tam giác DAE

b) Chứng minh tam giác ABD là tam giác cân

c) Gọi I là giao điểm của DE và AH ; K là giao điểm của DE và AB. Chứng minh 3 điểm B, I, M thẳng hàng ?

ĐANG CẦN GẤP ! MONG MỌI NGƯỜI GIÚP ĐỠ ! CẢM ƠN RẤT NHIỀU !

       

 

 

 

0
22 tháng 1 2017

Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C

15 tháng 4 2024

x=1/4 chon C

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 1:
1. 

$6x^3-2x^2=0$

$2x^2(3x-1)=0$

$\Rightarrow 2x^2=0$ hoặc $3x-1=0$

$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức

2.

$|3x+7|\geq 0$

$|2x^2-2|\geq 0$

Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$

$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý) 

Vậy đa thức vô nghiệm.

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Bài 2:

1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$

Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$

Do đó đa thức vô nghiệm

2.

$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$

$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$

Vậy đa thức khác 0 với mọi $x$

Do đó đa thức không có nghiệm.

4 tháng 1 2018

c. Ta có h(x) = 0 ⇒ 5x + 1 = 0 ⇒ x = -1/5

Vậy nghiệm của đa thức h(x) là x = -1/5 (1 điểm)

28 tháng 11 2023

\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0

(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0

\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0

(\(x\) - 2).(\(x^4\) - y2 - 3) = 8

8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}

Lập bảng ta có:

\(x-2\) -8 -4 -2 -1 1 2 4 8
\(x\) -6 -2 0 1 3 4 6 10
\(x^4\) - y2 - 3 -1 -2 -4 -8 8 4 2 1
y  \(\pm\)\(\sqrt{1294}\) \(\pm\)\(15\) \(\pm\)1 \(\pm\)\(\sqrt{6}\) y2 = -10 (ktm) \(\pm\)\(\sqrt{249}\) \(\pm\)\(\sqrt{1291}\) \(\pm\)\(\sqrt{9996}\)

vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:

(\(x\); y) = (0; -1;); (0; 1)

 

=>32m-16=0

=>m=1/2

31 tháng 7 2019

Đáp án C

27 tháng 9 2017

Đáp án : C.

8 tháng 6 2023

a) Để phương trình có 2 nghiệm phân biệt 

<=> \(\Delta=\left[-\left(4m+3\right)^2\right]-4.2.\left(2m-1\right)=16m^2+24m+9-16m+8=16m^2+8m+1+16=\left(4m+1\right)^2+16>0\)

với mọi giá trị của m. 

Vậy phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.

b) Vì phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m nên ta có: x1+x2\(\dfrac{4m+3}{2}\)và x1.x2=\(\dfrac{2m-1}{2}\)

19 tháng 11 2017