giải phương trình sau
\(\frac{x}{2x-3}\) - \(\frac{5}{x}\) = \(\frac{-1}{2x^2-3x}\)
giúp với đang cần ghấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2x}{x+2}+\frac{x+2}{2x}=2\)
\(\Leftrightarrow4x^2+\left(x+2\right)^2=4x\left(x+2\right)\)
\(\Leftrightarrow5x^2+4x+4=4x^2+8x\)
\(\Leftrightarrow5x^2+4x+4-4x^2-8x=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow x^2-2.x.2+2^2=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Rightarrow x=2\)
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
khó quá mk mới học lớp 6 nên k giải đc thông cảm cho mk nha
1) Hình như đề bị sai rồi bạn.
Thông thường pt đã cho sẽ là \(\frac{2x}{x-2}-\frac{5}{x-3}=\frac{5}{x^2-5x+6}\)
Ta thấy \(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
Nên ĐKXĐ là \(\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
pt đã cho \(\Leftrightarrow\frac{2x\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{5\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{2x^2-6x-5x+10}{\left(x-2\right)\left(x-3\right)}=\frac{5}{\left(x-2\right)\left(x-3\right)}\)\(\Rightarrow2x^2-11x+5=0\)(*)
Ta có \(\Delta=\left(-11\right)^2-4.2.5=81>0\)nên pt (*) có 2 nghiệm phân biệt:
\(\orbr{\begin{cases}x_1=\frac{-\left(-11\right)+\sqrt{81}}{2.2}=5\left(nhận\right)\\x_2=\frac{-\left(-11\right)-\sqrt{81}}{2.2}=\frac{1}{2}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{1}{2};5\right\}\)
2) Nhận thấy \(3x^2-27=3\left(x^2-9\right)=3\left(x-3\right)\left(x+3\right)\)nên ĐKXĐ ở đây là \(x\ne\pm3\)
pt đã cho \(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}+\frac{3}{4}=1+\frac{1}{x-3}\)
\(\Leftrightarrow\frac{1}{3\left(x-3\right)\left(x+3\right)}-\frac{3\left(x+3\right)}{3\left(x-3\right)\left(x+3\right)}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1-3x-9}{3x^2-27}=\frac{1}{4}\)\(\Rightarrow-12x-32=3x^2-27\)\(\Leftrightarrow3x^2+12x+5=0\)(#)
Nhận thấy \(\Delta'=6^2-3.5=21>0\)
Vậy pt (#) có 2 nghiệm phân biệt \(\orbr{\begin{cases}x_1=\frac{-12+\sqrt{21}}{3}\left(nhận\right)\\x_2=\frac{-12-\sqrt{21}}{3}\left(nhận\right)\end{cases}}\)
Vậy pt đã cho có tập nghiệm \(S=\left\{\frac{-12\pm\sqrt{21}}{3}\right\}\)
Điều kiện xác định x khác 1
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\Leftrightarrow\frac{1.\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\Leftrightarrow x^2+x+1-3x^2=2x^2-2x\)
\(\Leftrightarrow x^2-3x^2-2x^2+x+2x+1=0\)
\(\Leftrightarrow-4x^2+2x+1=0\)
\(\Leftrightarrow\left(-2x-1\right)^2=0\)
\(\Leftrightarrow-2x-1=0\)
\(\Rightarrow x=-0,5\)(thỏa mãn)
\(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}}{5}\)
\(\frac{6.\left(3x-1\right)-3x-1}{3}-\frac{12x+2\left(1-2x\right)}{2}=\frac{3\left(3x-1\right)}{5}\)
\(\Leftrightarrow\)\(\frac{18x-6-3x+3}{3}-\frac{12x+2-4x}{2}=\frac{9x-3}{5}\)
\(\Leftrightarrow\)\(\frac{15x-3}{3}-\frac{8x+2}{2}=\frac{9x-3}{5}\)
\(\Leftrightarrow\)\(10\left(15x-3\right)-15\left(8x+2\right)=6\left(9x-3\right)\)
\(\Leftrightarrow\)\(150x-30-120x-30=54x-18\)
\(\Leftrightarrow\)\(150x-120x-54x=-18+30+30\)
\(\Leftrightarrow-24x=42\)
\(\Leftrightarrow x=-\frac{7}{4}\)
\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\)
\(< =>\frac{x^2}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)
\(< =>x^2-10x+15=-1\)
\(< =>x^2-10x+16=0\)
Ta có : \(\Delta=100-4.16=100-64=36\)
nên phương trình sẽ có 2 nghiệm phân biệt
\(x_1=\frac{10+\sqrt{36}}{2}=\frac{10+6}{2}=8\)
\(x_2=\frac{10-\sqrt{36}}{2}=\frac{10-6}{2}=2\)
vậy phương trình có 2 nghiệm phân biệt là {2;8}
\(\frac{x}{2x-3}-\frac{5}{x}=\frac{-1}{2x^2-3x}\) ĐKXĐ : \(x\ne0;\frac{3}{2}\)
\(\frac{2x}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=\frac{-1}{2x^2-3x}\)
\(\frac{2x}{2x^2-3x}-\frac{10x-15}{2x^2-3x}=\frac{-1}{2x^2-3x}\)
Khử mẫu ta đc ; \(2x-10x-15=-1\)
\(-12x=14\Leftrightarrow x=-\frac{7}{6}\)(tm)