Tìm m:
1. x²+2(m+1)x+3m+7>0 đúng với mọi x
2. x²+2(m-1)x+m²-4>0 đúng với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) = (m+1)x² - 2(m+1)x + 2m+3
♠ m = -1: f(x) = 0.x² - 0.x + 1 = 1 > 0 với mọi x nên f(x) ≥ 0 có nghiệm x thuộc R
♠ m # -1, có ∆' = (m+1)² - (m+1)(2m+3) = -(m+1)(m+2)
ta biện luận theo dấu của delta':
m│ -∞________ -2 _________ -1 ________ +∞
∆ │≈≈≈≈≈ - ≈≈≈≈ 0 ≈≈≈≈ + ≈≈≈≈ || ≈≈≈≈ - ≈≈≈≈≈≈
* nếu m < -2 => ∆' < 0, m+1 < 0 => f(x) < 0 với mọi x nên f(x) ≥ 0 vô nghiệm
* nếu m = -2 <=> ∆' = 0 và m+1 < 0 <=> f(x) ≤ 0 với mọi x thuộc R
=> f(x) ≥ 0 có nghiệm x = 2 (còn dính đc chổ có dấu "=" )
* -2 < m < -1 <=> ∆' > 0 ; f(x) có 2 lần đổi dấu => f(x) ≥ 0 có nghiệm
* nếu m > -1 => ∆' > 0 và m+1 > 0 => f(x) > 0 với mọi x => f(x) ≥ 0 có nghiệm
Tóm lại các trường hợp: bpt f(x) ≥ 0 có nghệm khi và chỉ khi m ≥ -2
~~~~~~~~~~
Cách khác: giải ngược lại ta tìm m để bpt f(x) ≥ 0 vô nghiệm
tức là f(x) < 0 với mọi x thuộc R
* nếu m = -1 thì như trên f(x) ≥ 0 có nghiêm
* nếu m # -1, f(x) < 0 với mọi x thuộc R khi và chỉ khi
{ ∆' < 0
{ m+1 < 0
<=> { m < -2 hoăc m > -1
----- { m < -1
<=> m < -2
Vậy bpt f(x) ≥ 0 có nghiệm khi và chỉ khi m ≥ -2
X^2 + 2( m+1) X - m+3 =0
ta có
( m + 1 ) + m-3 = 0
m^2 + 3m -2 = 0
m1 = \(\frac{-3\sqrt{17}}{2}\)
m2 = \(\frac{-3-\sqrt{17}}{2}\)
Đáp án A
Phương pháp: Chia cả 2 vế cho 3x, đặt , tìm điều kiện của t.
Đưa về bất phương trình dạng
Cách giải :
Ta có
Đặt , khi đó phương trình trở thành
Ta có:
Vậy
\(\int_{\Delta'=\left(m+1\right)^2-3\left(m-1\right)\left(m-2\right)<0}^{m-1>0}\)\(\int\limits^{m>1}_{-2m^2-7m+-5<0}\)=>\(\int_{m<-1;m>\frac{5}{2}}^{m>1}\)=> m > 5/2
a/ \(\Delta'=\left(m+1\right)^2-\left(3m+7\right)< 0\)
\(\Leftrightarrow m^2-m-6< 0\)
\(\Rightarrow-2< x< 3\)
b/ \(\Delta'=\left(m-1\right)^2-\left(m^2-4\right)< 0\)
\(\Leftrightarrow5-2m< 0\Rightarrow m>\frac{5}{2}\)