K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 6 2020

\(\left(tana+cota\right)^2=m^2\)

\(\Leftrightarrow tan^2a+cot^2a+2=m^2\)

\(\Leftrightarrow tan^2a+cot^2a-2.tana.cota=m^2-4\)

\(\Leftrightarrow\left(tana-cota\right)^2=m^2-4\)

\(\Rightarrow tana-cota=\pm\sqrt{m^2-4}\)

8 tháng 3 2019

Chọn C.

Ta có tan α – cotα = 1 

Do  suy ra tanα < 0 nên 

Thay

 và

vào P  ta được 

2tan a-cot a=1

=>2tana-1/tan a=1

=>\(\dfrac{2tan^2a-1}{tana}=1\)

=>2tan^2a-tana-1=0

=>(tan a-1)(2tana+1)=0

=>tan a=-1/2 hoặc tan a=1

\(P=\dfrac{tan\left(-a\right)+2\cdot cota}{3\cdot tan\left(\dfrac{pi}{2}+a\right)}=\dfrac{-tana+2\cdot cota}{-3\cdot cota}\)

TH1: tan a=-1/2

\(P=\dfrac{\dfrac{1}{2}+2\cdot\left(-2\right)}{-3\cdot\left(-2\right)}=-\dfrac{7}{2}:6=-\dfrac{7}{12}\)

TH2: tan a=1

=>cot a=1

\(P=\dfrac{-1+2}{-3}=\dfrac{1}{-3}=-\dfrac{1}{3}\)

14 tháng 9 2023

Ta có :

\(2tan\alpha-cot\alpha=1\)

\(\Leftrightarrow2tan\alpha-\dfrac{1}{tan\alpha}=1\)

\(\Leftrightarrow2tan\alpha-\dfrac{1}{tan\alpha}-1=0\)

\(\Leftrightarrow\dfrac{2tan^2\alpha-tan\alpha-1}{tan\alpha}=0\left(tan\alpha\ne0\right)\)

\(\Leftrightarrow2tan^2\alpha-tan\alpha-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tan\alpha=1\\tan\alpha=-\dfrac{1}{2}\end{matrix}\right.\)

\(P=\dfrac{tan\left(8\pi-\alpha\right)+2cot\left(\pi+\alpha\right)}{3tan\left(\dfrac{3\pi}{2}+\alpha\right)}\)

\(\Leftrightarrow P=\dfrac{tan\left(4.2\pi-\alpha\right)+2cot\alpha}{3tan\left(2\pi-\dfrac{\pi}{2}+\alpha\right)}\)

\(\Leftrightarrow P=\dfrac{tan\left(-\alpha\right)+2cot\alpha}{3tan\left[-\left(\dfrac{\pi}{2}-\alpha\right)\right]}\)

\(\Leftrightarrow P=\dfrac{-tan\alpha+2cot\alpha}{-3tan\left(\dfrac{\pi}{2}-\alpha\right)}\)

\(\Leftrightarrow P=\dfrac{-tan\alpha+2cot\alpha}{-3cot\alpha}\)

- Với \(tan\alpha=1\Rightarrow cot\alpha=1\)

\(\Leftrightarrow P=\dfrac{-1+2.1}{-3.1}=-\dfrac{1}{3}\)

- Với \(tan\alpha=-\dfrac{1}{2}\Rightarrow cot\alpha=-2\)

\(\Leftrightarrow P=\dfrac{\dfrac{1}{2}+2.\left(-2\right)}{-3.\left(-2\right)}=\dfrac{-\dfrac{7}{2}}{6}=-\dfrac{7}{12}\)

 

5 tháng 11 2019

Trên đường tròn lượng giác,từ A(1,0) vẽ tiếp tuyến t’At với đường tròn lượng giác.

Từ B(0,1) vẽ tiếp tuyến s’Bs với đường tròn lượng giác .

Cho cung lượng giác AM có số đo α (α ≠ π/2 + kπ ). Gọi T là giao điểm của OM với trục t’At.

Gọi S là giao điểm của OM và trục s’Bs.

Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm T trên trục tan. Do đó

tan(α + kπ) = tanα.

Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm S trên trục cot. Do đó

cot(α + kπ) = cotα.

5 tháng 5 2017

1 tháng 1 2019

Giải bài 2 trang 155 SGK Đại Số 10 | Giải toán lớp 10

+) Nếu k lẻ: k = 1+2m ; m ∈ Z , ta có:

Giải bài 2 trang 155 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 2 trang 155 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 2 trang 155 SGK Đại Số 10 | Giải toán lớp 10

4 tháng 5 2021

\(sin\alpha=-\sqrt{1-cos^2\alpha}=-\dfrac{\sqrt{21}}{5}\)

\(tan\alpha=\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\dfrac{\sqrt{21}}{5}}{-\dfrac{2}{5}}=\dfrac{\sqrt{21}}{2}\)

\(cot\alpha=\dfrac{1}{tan\alpha}=\dfrac{2}{\sqrt{21}}\)

18 tháng 1 2022

Vì \(\dfrac{\pi}{2}< \alpha< \pi\) \(\Rightarrow\) cos \(\alpha\) < 0

\(\Rightarrow\) cos \(\alpha\) = \(-\sqrt{1-sin^2\alpha}\) = \(-\dfrac{2\sqrt{2}}{3}\)

\(\Rightarrow\) tan \(\alpha\) = \(\dfrac{sin\alpha}{cos\alpha}=\dfrac{-\sqrt{2}}{4}\)

\(\Rightarrow\) cot \(\alpha\) = \(\dfrac{1}{tan\alpha}\) = \(-2\sqrt{2}\)

Chúc bn học tốt!

28 tháng 4 2019

23 tháng 7 2017

Cho α là góc nhọn, sinα = 1/2. Tính cosα; tanα; cotα

Ta có: sin 2 α + cos 2 α = 1

6 tháng 4 2017

Với π/2 < α < π thì sinα > 0, cosα < 0, tanα < 0

Giải sách bài tập Toán 10 | Giải sbt Toán 10