\(20^{n^{ }}+16^n-3^n-1\) chia hết cho 323 (n chẵn, n thuộc N)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận thấy : \(323=17.19\)và ƯCLN ( 17 ; 19 ) = 1 nên ta chứng minh \(\left(20^n-1+16^n-3^n\right)\)\(⋮\)\(17\)và \(19\)
Ta có :
\(20^n-1⋮\left(20-1\right)=19;16^n-3^n⋮\left(16+3\right)=19\)( vì n chẵn ) (1)
Mặt khác :
\(\left(20^n+16^n+3^n+1=20^n-3^n+16^n-1\right)\)
Và \(20^n-3^n⋮\left(20-3\right)=17;16^n-1⋮\left(16+1\right)=17\) (2)
Từ (1) và (2) suy ra đpcm
Ta có 323=17.19
+Chứng minh A⋮17
Thật vậy A=20n+16n−3n−1 = (16^n-1)+ (20^n-3^n)
Nhận xét⎨(16n−1)⋮17 (20n−3n)⋮17
⇒A⋮17 (1)
+Chứng minh A⋮19A⋮19
Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16^n+3^n)+ (20^n-1)
Nhận xét ⎨(16n+3n)⋮19 (20n−1)⋮19
⇒A⋮19 (2)
Mà (17;19)=1(17;19)=1
Từ (1) và (2)⇒A⋮BCNN(17.19)
hay A⋮323 (đpcm)
Ta có 323=17.19
+Chứng minh A⋮17
Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16n-1)+ (20n-3n)
Nhận xét:⎨(16n−1)⋮17(20n−3n)⋮17
=>A⋮17(1)
+Chứng minh A⋮19
Thật vậy A=20n+16n−3n−1=A=20n+16n−3n−1= (16n+3n)+ (20n-1)
Nhận xét ⎨(16n+3n)⋮19(20n−1)⋮19
⇒A⋮19(2)
Mà (17;19)=1
Từ (1) và (2)⇒A⋮(17.19)⇒A⋮(17.19)
hayA⋮323 (đpcm)
\(323=17.19\)
+) \(20^n+16^n-3^n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
\(20^n-1=20^n-1^n⋮\left(20-1\right)=19\)
\(16^n-3^n⋮\left(16+3\right)=19\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮19\)
+) \(20^n+16^n-3^n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
\(20^n-3^n⋮\left(20-3\right)=17\)
\(16^n-1=16^n-1^n⋮\left(16+1\right)=17\) (vì n chẵn)
\(\Rightarrow20^n+16^n-3^n-1⋮17\)
Mà \(\left(17,19\right)=1\)
\(\Rightarrow20^n+16^n-3^n-1⋮\left(17.19\right)=323\)
20n+16n-3n-1 \(⋮\)321
vì 323=17.19
Ta thấy : 20n+16n-3n-1
=(20n-1) + (16n-3n)
20n-1\(⋮\)19 với n chẵn
\(\Rightarrow\)(20n-1) + ( 16n -3n)\(⋮\)19 (1)
Mặt khác : 20n+16n-3n-1
=( 20n-3n) + ( 16n-1)
20n-3n\(⋮\)17 với n chẵn
16n-1 \(⋮\)17 với n chẵn
\(\Rightarrow\)(20n-3n) + ( 16n-1) \(⋮\)17 (2)
Từ (1) và (2) \(\Rightarrow\)20n+16n-3n-1 \(⋮\)17\(\times\)19
\(\Rightarrow\)20n+16n-3n-1 \(⋮\)323 ( đpcm)
Ta có: \(20^n+16^n-3n-1=\left(20^n-1\right)+\left(16^n-3^n\right)\)
Ta lại có: \(20^n-1⋮19\left(20-1=19\right)\)
và \(16^n-3^n⋮19\)(vì n chẵn)
nên \(20^n+16^n-3^n-1⋮19\)
Ta có: \(20^n+16^n-3n-1=\left(20^n-3^n\right)+\left(16^n-1\right)\)
mà \(20^n-3^n⋮17\left(20-3=17\right)\)
và \(16^n-1⋮17\)(vì n chẵn)
nên \(20^n+16^n-3^n-1⋮17\)
mà \(20^n+16^n-3^n-1⋮19\)(cmt)
và ƯCLN(17,19)=1
nên \(20^n+16^n-3^n-1⋮19\cdot17\)
hay \(20^n+16^n-3^n-1⋮323\)(đpcm)
chép mạng à 16^n-3^n chia hết cho 19
ảo