cho tam giác abc vuông tại a , phân giác bd . kẻ de vuông góc với bc .chứng minh
a , ab=be
b, bd là trung trực ae
c, kẻ ah vuông góc với bc,kẻ dk vuông góc với ac. chứng minh bk=dk
d, ab+ ac < bc + 2ah
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình thì bạn tự vẽ nha =))) Mik xin lỗi
a) Chứng Minh AB=BK
Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có :
B1 = B2 ( vì BD là tia p/giác của BAC )
BE là cạnh huyền chung
=) tam giác ABE = tam giác BEK ( ch - gn )
=) AB = AK ( 2 cạnh tương ứng )
b) Chứnh minh DK vuông góc với BC
Xét tam giác ABD và Xét tam giác KBD có :
AB = BK (cm ở câu a )
B1 = B2 vì ( BD là tia p/giác của BAC )
BD là cạnh chung
=) tam giác ABD = tam giác KBD ( cgc )
=) góc BKD = góc BAD ( 2 góc tương ứng )
mà góc BAD = 90o
=) góc KBD = 90o
=) DK vuông góc vs BC
c) CM IK // AC
a) Chứng Minh AB=BK
Xét tam giác ABE ( góc AEB = 90o ) và tam giác BEK ( góc BEK = 90o ) có :
B1 = B2 ( vì BD là tia p/giác của BAC )
BE là cạnh huyền chung
=) tam giác ABE = tam giác BEK ( ch - gn )
=) AB = AK ( 2 cạnh tương ứng )
b) Chứnh minh DK vuông góc với BC
Xét tam giác ABD và Xét tam giác KBD có :
AB = BK (cm ở câu a )
B1 = B2 vì ( BD là tia p/giác của BAC )
BD là cạnh chung
=) tam giác ABD = tam giác KBD ( cgc )
=) góc BKD = góc BAD ( 2 góc tương ứng )
mà góc BAD = 90o
=) góc KBD = 90o
=) DK vuông góc vs BC
c) CM IK // AC
bn tham khảo câu hỏi của bn Viêt Thanh Nguyễn Hoàng nhé, bài ấy mik cx làm đấy
a) Có tam giác ABC vuông tại A
=>BC2=AC2+AB2 ( định lí Pitago)
=>BC2=82+62=100
=> BC=10 (cm)
b) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
Góc DBA= góc DBK hay góc EBA= góc EBK ( vì BD là tia phân giác của góc ABC)
=> tam giác ABE= tam giác KBE( cạnh góc vuông- góc nhọn)
=> BA=BK ( 2 cạnh tương ứng)
Vạy tam giác ABK cân tại B
c) Nối D với K, ta có tam giác DKE vuông tại E
Theo câu b, ta có tam giác ABE= tam giác KBE
=> KE=EA( 2 cạnh tương ứng) và góc EAB=góc EKB (1)
Xét tam giác vuông DEA và tam giác vuông DEK có
Cạnh DE chung
EA=KE
=> tam giác DEA= tam giác DEK ( 2 cạnh góc vuông)
=> Góc DAE=góc DKE (2)
Từ (1) và (2) =>góc DKE+ góc EKB=góc DAE+ góc EAB= góc DAB=90 độ
=> Góc DKB= 90 độ
Vậy DK vuông góc với BC
a) Áp dụng định lí Pi-Ta-go vào ΔABC :
\(AC^2=BC^2-AB^2=10^2-6^2=64\)
\(AC=\sqrt{64}=8\left(cm\right)\).
b) ΔABK có BE vừa là đường cao vừa là trung tuyến nên tam giác ABk là tam giác cân.( nếu bạn chưa học tính chất này thì xét 2 tam giác BEA và BEK cũng được, điều kiện xét đã có sẵn r).
c) Xét ΔABD và ΔKBD có:
AB=AK(ΔABK cân tại B)
Góc ABD=KBD(gt)
BD cạnh chung
Vậy ΔABD=ΔKBD(c.g.c)
=> Góc BAD=BKD=90o(hai góc tương ứng)
hay DK vuông góc với BC
d) Vì DK vuông góc với BC
AH vuông góc với BC
nên DK//AH => Góc DKA=HAK(so le trong) (1)
Vì ΔABD=KBD(cmt) => AD=KD(2 cạnh tương ứng) hay tam giác ADK cân tại K
=> Góc DKA=DAK hay DKA=CAK (2)
Từ (1) và (2) suy ra Góc HAK=CAK
Hay AK là tia phân giác của góc HAC.
bài này à ko bít kamf khai đi học trường nào tỉ tỉ giảng bài cho
a.Xét hai tam giác vuông ABE và tam giác vuông KBE có
góc ABE = góc KBE = 90độ
cạnh BE chung
góc ABE = góc KBE [ gt ]
Do đó ; tam giác ABE = tam giác KBE [ g.c.g ]
\(\Rightarrow\) AB = KB [ cạnh tương ứng ]
Vậy tam giác ABK cân tại B
b.Xét tam giác ABD và tam giác KBD có
AB = KB [ vì tam giác ABE = tam giác KBE theo câu a ]
góc ABD = góc KBD [ vì BD là tia phân giác góc B ]
cạnh BD chung
Do đó ; tam giác ABD = tam giác KBD [ c.g.c ]
\(\Rightarrow\)góc BAD = góc BKD [ góc tương ứng ]
mà bài cho góc BAD = 90độ nên góc KBD = 90độ
Vậy DK vuông góc với BC
c.Vì DK vuông góc với BC và AH vuông góc với BC nên
DK // AH
Suy ra ; góc HAK = góc DKA [ ở vị trí so le trong ] [ 1 ]
Mặt khác ; AD = DK [ vì tam giác ABD = tam giác KBD ]
\(\Rightarrow\)tam giác ADK là tam giác cân tại D nên
góc DKA = góc DAK [ 2 ]
Từ [ 1 ] và [ 2 ] suy ra
góc HAK = góc DAK
Vậy AK là tia pg góc KAD hay AK là tia pg góc HAC
a. Xét Δ ABE và Δ KBE có:
^B1=^B2(BD là tia p/g)
^BEA=^KEB=90o
AE chung
=> ΔABE=ΔKBE(g.c.g)
=>AB=KB
=>ΔABK cân tại B
(xin lỗi mình ko biết phần b,c,d) ;-;
cho bạn cái hình nè :
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABC}\),E∈BC)
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
⇒BA=BE(hai cạnh tương ứng)
b) Ta có: BA=BE(cmt)
nên B nằm trên đường trung trực của AE(định lí đường trung trực của một đoạn thẳng)(1)
Ta có: ΔABD=ΔEBD(cmt)
⇒DA=DE(hai cạnh tương ứng)
hay D nằm trên đường trung trực của AE(định lí đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE(đpcm)