K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

giải giúp mik câu d, dới!!!

a: góc AMB=góc AEB=1/2*sđ cung AB=90 độ

Xét ΔBMS vuông tại M và ΔBED vuông tại E có

góc MBS=góc EBD

=>ΔBMS đồng dạng với ΔBED

=>góc BSM=góc BDE

=>góc MSE=góc MDE

=>MSDE nội tiếp

b: Xét ΔSME và ΔSBA có

góc S chung

góc SEM=góc SAB

=>ΔSME đồng dạng với ΔSBA

18 tháng 6 2019

Gợi ý: Chứng minh P là trực tâm tam giác SAB

a: góc HCB+góc HEB=180 độ

=>HCBE nội tiếp

Xét ΔACH vuông tại C và ΔAEB vuông tại E có

góc CAH chung

=>ΔACH đồng dạng với ΔAEB

=>AC/AE=AH/AB

=>AC*AB=AE*AH

b: góc IDH=1/2*sđ cung DB

góc IHD=90 độ-góc AMH=1/2*sđ cung DB

=>góc IDH=góc IHD

=>ΔIHD cân tại I

1 tháng 3 2022

Xét (O) có 

^AMB = ^ANB = 900 ( góc nt chắn nửa đường tròn ) 

nên AN ; BM lần lượt là đường cao 

mà AN giao BN = H 

=> H là trực tâm => SH là đường cao thứ 3 

Vậy SH vuông AB 

1 tháng 3 2022

Bạn ơi vẽ hình sao v ?

 

13 tháng 12 2017

Đáp án A

Ta có 

13 tháng 2 2017

20 tháng 2 2017

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AN ⊥ NB

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AM ⊥ MB

ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.

⇒ A là trực tâm của ΔSHB.

⇒ AB ⊥ SH (đpcm)

Kiến thức áp dụng

+ Góc nội tiếp chắn nửa đường tròn là góc vuông.

+ Trong một tam giác, ba đường cao đồng quy tại trực tâm.

6 tháng 11 2019

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AN ⊥ NB

Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn ⇒ Giải bài 19 trang 75 SGK Toán 9 Tập 2 | Giải toán lớp 9 ⇒ AM ⊥ MB

ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.

⇒ A là trực tâm của ΔSHB.

⇒ AB ⊥ SH (đpcm)

1 tháng 3 2022

a, Ta có SA = SB (tc tiếp tuyến cắt nhau ) 

OA = OB = R

Vậy OS là đường trung trực đoạn AB 

=> SO vuông AB tại H

b, Vì I là trung điểm 

=> OI vuông NS 

Xét tứ giác IHSE ta có ^EHS = ^EIS = 900

mà 2 góc này kề, cùng nhìn cạnh ES

Vậy tứ giác IHSE nt 1 đường tròn 

=> ^ESH = ^HIO ( góc ngoài đỉnh I ) 

Xét tam giác OIH và tam giác OSE có 

^HIO = ^OSE (cmt) 

^O_ chung 

Vậy tam giác OIH ~ tam giác OSE (g.g) 

\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)

Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có 

\(OA^2=OH.OS\)(hệ thức lượng) 

\(\Rightarrow OA^2=R^2=OI.OE\)

16 tháng 2 2022

Xét (O) có : ^ANB = ^BMA = 900 ( góc nt chắn nửa đường tròn ) 

hay ta có AN là đường cao, BM là đường cao 

mà AN cắt BM tại H hay H là trực tâm tam giác ASB 

=> SH là đường cao thứ 3 trong tam giác => SH vuông AB