K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

8 tháng 9 2021

\(a,\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,\Leftrightarrow\left(4x^2+4xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

 

8 tháng 9 2021

a,9x^2+y^2+2z^2−18x+4z−6y+20=0

⇔9(x−1)^2+(y−3)^2+2(z+1)^2=0

⇔x=1;y=3;z=−1

b,5x^2+5y^2+8xy+2y−2x+2=0

⇔4(x+y)2+(x−1)2+(y+1)2=0

⇔x=−y;x=1y=−1⇔x=1y=−1

c,5x^2+2y^2+4xy−2x+4y+5=0

⇔(2x+y)^2+(x−1)^2+(y+2)^2=0

⇔2x=−y;x=1;y=−2

⇔x=1;y=−2

d,x^2+4y^2+z^2=2x+12y−4z−14

⇔(x−1)^2+(2y−3)^2+(z+2)^2=0

⇔x=1;y=3/2;z=−2

e: Ta có: x^2−6x+y2+4y+2=0

⇔x^2−6x+9+y^2+4y+4−11=0

⇔(x−3)^2+(y+2)^2=11

Dấu '=' xảy ra khi x=3 và y=-2

 

25 tháng 10 2018

x = 3,21

x = 3,22

x = 3,23

25 tháng 10 2018

x=3,20000000000000000000001

x=3,210000000000000000000001

x=3.211111111111111111111111111

21 tháng 1 2022

- Nếu p = 2 => p + 4  = 6 => hợp số (loại)

- Nếu p = 3 => p + 6  = 9 => hợp số (loại)

- Nếu p = 5 => p + 4 = 9 => hợp số (loại)

- Nếu p = 7 => p + 4 = 11 ; p + 6 = 13 ; p + 10 = 17 ; p + 12 = 19 ; p + 16 = 23 ; p + 22 = 29 => số nguyên tố (thỏa mãn)

- Nếu p > 7 => p không chia hết cho 7

+) Nếu p = 7k + 1 => p + 6 = 7k + 1 + 6 = 7k + 7  => hợp số (loại)

+) Nếu p = 7k + 2 => p + 12 = 7k + 2 + 12 = 7k + 14 => hợp số (loại)

+) Nếu p = 7k + 3 => p + 4 = 7k + 3 + 4 = 7k + 7 => hợp số (loại)

+) Nếu p = 7k + 4 => p + 10 = 7k + 4 + 10 = 7k + 14 => hợp số (loại)

+) Nếu p = 7k + 5 => p + 16 = 7k + 5 + 16 = 7k + 21 => hợp số (loại)

+) Nếu p = 7k + 6 => p + 22 = 7k + 6 + 22 = 7k + 28 => hợp số (loại)

Vậy p = 7 

21 tháng 1 2022

vì p là số nguyên tố nên p là 2;3;5;7;9;,......

mà có số 4;6;12;16;22;24 đều ko phải số nguyên tố

=> p là số lẻ

vậy p là:(;3;5;7;9,.....)

nên p=7 vì p + với 4;6;12;16;22;24 đều là số nguyên tố

1 tháng 5 2019

Ta có: \(\hept{\begin{cases}\left(2x+1\right)^{2008}\ge0\forall x\\|3y-1|^{2007}\ge0\forall y\end{cases}}\)\(\Rightarrow\left(2x+1\right)^{2008}+|3y-1|^{2007}\ge0\forall x,y\)

Do đó \(\left(2x+1\right)^{2008}+|3y-1|^{2007}=0\)

\(\Leftrightarrow\hept{\begin{cases}2x+1=0\\3y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{3}\end{cases}}}\)

Vậy \(\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{3}\end{cases}}\)

1 tháng 5 2019

ko hiểu thì hỏi nhá 

17 tháng 6 2023

\(xy-2x+y=1\)

\(\Leftrightarrow x\left(y-2\right)+\left(y-2\right)=-1\)

\(\Leftrightarrow\left(x+1\right)\left(y-2\right)=-1\)

Ta có bảng sau:

\(x+1\) 1 -1
\(y-2\) -1 1
\(x\) 0 -2
\(y\) 1 3

Vậy ta tìm được các cặp số \(\left(0;1\right);\left(-2;3\right)\) thỏa yêu cầu bài toán.