Tính nhanh
M=(1+1/1×3)×(1+1/2×4)×(1/3×5)×...×(1+1/99×101)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{1}{3}\times\left(\dfrac{1}{2}+\dfrac{1}{3}\right)=\dfrac{1}{3}\times\dfrac{5}{6}=\dfrac{5}{18}\\ b,=\dfrac{4}{5}\times\left(\dfrac{1}{2}-\dfrac{1}{3}\right)=\dfrac{4}{5}\times\dfrac{1}{6}=\dfrac{2}{15}\\ c,=456\times99-6\times99+456\\ =456\times\left(99+1\right)-594\\ =456\times100-594=45600-594=45006\\ d,=101\times\left(101-1\right)=101\times100=10100\)
\(\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}......\frac{100.100}{99.101}=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4.5...101}=100.\frac{2}{101}=\frac{200}{101}\)
Ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Ta có: \(\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=\frac{3}{4}\)
\(2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right).x=2.\frac{3}{4}\)
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right).x=\frac{3}{2}\)
\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right).x=\frac{3}{2}\)
\(\left(1-\frac{1}{101}\right).x=\frac{3}{2}\)
\(\frac{100}{101}.x=\frac{3}{2}\)
\(x=\frac{3}{2}:\frac{100}{101}\)
\(x=\frac{303}{200}\)