tìm số tự nhiên x,y biết:
a)xy+3x-5y=33
b)2xy-y+3x=10
c)7x^2+41=6^y(x,y là số nguyên tố)
mong nhận đc sự trả lời sớm nhất ạ ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(xy-7y+y=-22\)
\(=xy-7x+y-7+7=-22\)
\(=\left(xy-7x\right)+\left(y-7\right)=-29\)
\(=x\left(y-7\right)+\left(y-7\right)=-29\)
\(=\left(y-7\right)\left(x+1\right)=-29\)
Vì \(x,y\varepsilon Z\)nên\(\left(y-7\right),\left(x+1\right)\varepsilon Z\)
\(\Rightarrow\left(y-7\right);\left(x+1\right)\varepsilon B\left(-29\right)\)
Mà \(-29=-1.29=1.\left(-29\right)\)
Ta có 4TH :\(1,\hept{\begin{cases}y-7=-1\\x+1=29\end{cases}}\Rightarrow\hept{\begin{cases}y=6\\x=28\end{cases}}\left(TM\right)\)
\(2,\hept{\begin{cases}y-7=1\\x+1=-29\end{cases}\Rightarrow\hept{\begin{cases}y=8\\x=-30\end{cases}}}\)
\(3,\hept{\begin{cases}y-7=29\\x+1=-1\end{cases}\Rightarrow\hept{\begin{cases}y=36\\x=-2\end{cases}}}\)
\(4,\hept{\begin{cases}y-7=-29\\x+1=1\end{cases}\Rightarrow\hept{\begin{cases}y=-22\\x=0\end{cases}}}\)
Vậy có 4 cặp (x, y): \(\left(6;28\right);\left(8;-30\right);\left(36;-2\right);\left(-22;0\right)\)
Vì dài quá nên mk chỉ làm từng này thôi nhé, nếu mk đúng nha!
1.64a=80b=96c=>\(\frac{64a}{960}=\frac{80b}{960}=\frac{96c}{960}\)
=>\(\frac{a}{15}=\frac{b}{12}=\frac{c}{10}\)
......ko biết
2.Có:xy+3x+y=4
=>x(y+3)+y=4
=>x(y+3)+(y+3)=4+3=7
=>(x+1)(y+3)=7=>x+1 và y+3 thuộc Ư(7)
x+1 | -1 | -7 | 1 | 7 |
y+3 | -7 | -1 | 7 | 1 |
x | -2 | -8 | 0 | 6 |
y | -10 | -4 | 4 | -2 |
Với các cặp số(x;y) trên ko có số nào thỏa mãn x+y=19
Ta có: 64=2.2.2.2.2.2
80=2.2.2.2.5
96=2.2.2.2.2.3
=>BCLN(64,80,96)=2.2.2.2.2.2.3.5=960
Vì a,b,c nhỏ nhất nên 64a=80b=96c
=>a=960:64=15
b=960:80=12
c=960:96=10
Vậy a=15 ; b=12 ; c=10
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a