K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2023

0,2:x=1,03+3,97

 

 

a: A=-2xy+xy+xy^2=-xy+xy^2

Bậc là 3

b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)

Bậc là 4

c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)

Bậc là 5

d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)

bậc là 3

e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)

=-2x^2+2z^4-y^3

Bậc là 4

f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)

Bậc là 4

8 tháng 7 2019

\(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)

\(A=\sqrt{\frac{x^2}{2xyz.yz+xz.xy}}+\sqrt{\frac{y^2}{2xyz.xz+xy.yz}}+\sqrt{\frac{z^2}{2xyz.xy+xz.yz}}\)

\(A=\sqrt{\frac{x^2}{yz\left(xy+yz+xz\right)+xz.xy}}+\sqrt{\frac{y^2}{xz\left(xy+yz+xz\right)+xy.yz}}+\sqrt{\frac{z^2}{xy\left(xy+yz+xz\right)+xz.yz}}\)

\(A=\sqrt{\frac{x^2}{\left(yz+xy\right)\left(yz+xz\right)}}+\sqrt{\frac{y^2}{\left(xz+xy\right)\left(xz+yz\right)}}+\sqrt{\frac{z^2}{\left(xy+yz\right)\left(xy+xz\right)}}\)

Áp dụng bđt \(\sqrt{ab}\le\frac{a+b}{2}\) ta có:

\(2A\le\frac{x}{yz+xy}+\frac{x}{yz+xz}+\frac{y}{xz+xy}+\frac{y}{xz+yz}+\frac{z}{xy+yz}+\frac{z}{xy+xz}\)

\(=\frac{x+z}{yz+xy}+\frac{x+y}{yz+xz}+\frac{y+z}{xz+xy}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Mà: \(xy+yz+xz=2xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Rightarrow2A\le2\Rightarrow A\le1."="\Leftrightarrow a=b=c=\frac{3}{2}\)

31 tháng 3 2018

Đề phải cho x;y;z dương chứ nhỉ?

Áp dụng bất đẳng thức AM-GM:

\(x^2y^2+y^2z^2\ge2\sqrt{x^2y^4z^2}=2xy^2z\)

\(y^2z^2+x^2z^2\ge2\sqrt{x^2y^2z^4}=2xyz^2\)

\(x^2y^2+x^2z^2\ge2\sqrt{x^4y^2z^2}=2x^2yz\)

Cộng theo vế:

\(2\left(x^2y^2+y^2z^2+x^2z^2\right)\ge2\left(xy^2z+x^2yz+xyz^2\right)\)

\(\Rightarrow x^2y^2+y^2z^2+z^2x^2\ge xy^2z+x^2yz+xyz^2\)

Dấu "=" khi \(x=y=z\)

13 tháng 10 2018

Bổ sung đề: Tìm 3 số nguyên x, y, z sao cho \(xyz=x^2-2z+2\)

Giải:

Từ \(xyz=x^2-2z+2\Rightarrow z=\dfrac{x^2+2}{xy+2}\in Z\)

*) Với \(x=y\) ta có \(z=1\)

Vậy mọi bộ 3 số \(\left(x;x;1\right)\) với x là số nguyên dương tùy ý thì thỏa mãn đề bài

*) Với \(x< y\Rightarrow x^2+2< xy+2\Rightarrow\dfrac{x^2+2}{xy+2}< 1\)

=> Không thỏa mãn đề bài

*) Với \(x>y\)

Giả sử bộ 3 số nguyên dương \(\left(x;y;z\right)\) thỏa mãn để bài \(\Rightarrow y\left(x^2+2\right)⋮xy+2\)

\(\Leftrightarrow\left[x\left(xy+2\right)-2\left(x-y\right)\right]⋮\left(xy+2\right)\Rightarrow2\left(x-y\right)⋮\left(xy+2\right)\)

Do đó tồn tại số k nguyên dương sao cho \(2\left(x-y\right)=k\left(xy+2\right)\)

+ Với \(k\ge2\) ta có \(x-y\ge xy+2\Leftrightarrow\left(x+1\right)\left(y-1\right)+3\le0\) (vô lí)

+ Với \(k=1\) ta có \(2\left(x-y\right)=xy+2\Leftrightarrow\left(x+2\right)\left(y-2\right)=-6\)

Do x; y nguyên dương và \(x>y\Rightarrow y-2=-1\)\(x+2=6\Leftrightarrow x=4\)\(y=1\Rightarrow z=3\) (tm)

Vậy \(\left(x;y;z\right)=\left(4;1;3\right)\) và bộ số \(\left(x;x;1\right)\) trong đó x là số nguyên dương thỏa mãn đề bài.

19 tháng 9 2017

Nhìn cái đề xong .........

pp bác em đi chớt..........