Cho đg tròn (C): \(x^2+y^2+2x-4y-3=0\) và đg thg d: x-y+1=0
a) Chung minh mọi đường thẳng qua d đi qua điểm A(-3;2) luôn cắt (C) tại 2 điểm phân biệt
b) viết Pt tiep tuyến của đg tròn đã cho tại điểm là giao điểm của (C) với tia Ox
c) C/m đg thẳng d cắt đg tròn tại 2 điểm phân biệt A, B. Tính diện tích tam giác AIB
Đường tròn tâm \(I\left(-1;2\right)\) bán kính \(R=2\sqrt{2}\)
a/ \(\overrightarrow{AI}=\left(2;0\right)\Rightarrow AI=2< R\)
\(\Rightarrow\) A nằm trong đường tròn \(\Rightarrow\) mọi đường thẳng qua A đều cắt đường tròn tại 2 điểm phân biệt
b/ Giao điểm của (C) với Ox thỏa: \(\left\{{}\begin{matrix}y=0\\x^2+y^2+2x-4y-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x^2+2x-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}M\left(1;0\right)\\N\left(-3;0\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IM}=\left(2;-2\right)=2\left(1;-1\right)\\\overrightarrow{IN}=\left(-2;-2\right)=-2\left(1;1\right)\end{matrix}\right.\)
Có hai tiếp tuyến (vuông góc IM và IN): \(\left[{}\begin{matrix}1\left(x-1\right)-y=0\\1\left(x+3\right)+y=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-y-1=0\\x+y+3=0\end{matrix}\right.\)
c/ \(d\left(I;d\right)=\frac{\left|-1-2+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}< R\)
\(\Rightarrow\) d cắt I tại 2 điểm phâm biệt
Áp dụng định lý Pitago: \(AB=2\sqrt{R^2-d^2\left(I;d\right)}=2\sqrt{8-2}=2\sqrt{6}\)
\(\Rightarrow S_{IAB}=\frac{1}{2}.d\left(I;d\right).AB=\frac{1}{2}.\sqrt{2}.\sqrt{6}=\sqrt{3}\)