K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét ΔABE và ΔACD có :

 AB = AC(gt)

^A - chung

AE = AD (gt)

=> ΔABE = ΔACD (c.g.c)

=> BE=CD ( 2 cạnh  tương ứng)

b,vì tam giác MBD= tam giác MEC:

=> DM=EM ( 2 cạnh đồng vị)

 XÉt  tam giác AMD và tam giác AME

   AD =AE ( Gt)

DM=EM ( CMT)

AM cạnh chung

=> tam giác AMD=AME ( c.c.c )

chúc bạn học tốt

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

Suy ra: BC=DE

1 tháng 10 2021

Bài 5: Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC. Chứng minh rằng: a) DE = BC b) DE vuông góc với BC

 

a: Xét ΔABC co AD/AB=AE/AC

nên DE//BC

b: Xét ΔDBM và ΔECM có

DB=EC

góc B=goc C

BM=CM

=>ΔDBM=ΔECM

b: Xét ΔADM và ΔAEM có

AD=AE
AM chung

MD=ME

=>ΔAMD=ΔAME

31 tháng 3 2020

a)      Xét tam giác ADE có

               Có AD=AE

             =>Tam giác ADE cân tại A

Vì tam giác ADE và tam giác ABC đều cân tại A

  =>B=C=D=E

Mà 2 góc B và D ở vị trí đồng vị nên DE//BC

b)      Có DB=AB-AD

            EC=AC-AE

             Mà AB=AC

                   AD=AE

              =>DB=EC

             Xét tam giác MBD và tam giác MEC

               Có BM=CM(gt)

                     B=C(tam giác ABC cân tại  A)

                      DB=EC(cmt)

                    =>Tam giác MBD=Tam giác MEC

       c)Vì tam giác MBD=tam giác MEC

                    => DM=EM(2 cạnh đông vị)

               Xét tam giác ADM và tam giác AEM

                 Có AD=AE(gt)

                       AM cạnh chung

                       DM=EM(cmt)

                    =>Tam giác ADM= Tam giácEDM  

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

a: Xet ΔABH vuông tại H và ΔDBH vuông tại H có

BA=BD

BH chung

=>ΔABH=ΔDBH

=>góc ABH=góc DBH

b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D co

BE chung

BA=BD

=>ΔBAE=ΔBDE

=>góc ABE=góc DBE

=>B,H,E thẳng hàng

c:

Sửa đề: CH cắt AF tại G

Xét ΔADC có

CH,AF là trung tuyến

CH cắt AF tại G

=>G là trọng tâm

a, Xét \(\Delta\)ABE và \(\Delta\)ACD cs :

AB = AC(gt)

^A - chung

AE = AD (gt)

=> \(\Delta\)ABE = \(\Delta\)ACD (c.g.c)

b) Từ \(\Delta\)ABE = \(\Delta\)ACD (câu a)

=> đpcm 

A D E B C

a) Xét \(\Delta ABE\)và \(\Delta ACD\)có:

\(AB=AC\left(gt\right)\)

\(\widehat{A}\)là góc chung

\(AD=DE\left(gt\right)\)

\(\Rightarrow\Delta ABE=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow BE=CD\)( 2 cạnh tương ứng )

b) Đề sai, điểm M đâu???

c) Ta có: \(AD=AE\left(gt\right)\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{DAE}}{2}\left(1\right)\)

Lại có: \(\Delta ABC\)cân tại A ( gt )

\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{DAE}}{2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{ADE}=\widehat{ABC}\)

mà 2 góc này ở vị trí đồng vị

\(\Rightarrow DE//BC\left(đpcm\right)\)

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB