Cho hình vuông ABCD trên đường chéo AC lấy điểm e (AE>EC). Đường thẳng qua điểm E vuông góc với BE cắt AD tại H và cắt DC kéo dài tại K. CMR: a. ABEH là tứ giác nội tiếp. b. 2 tam giác BCE = DCE. c. DE = HE. d. 4 điểm H, B, K, D cùng thuộc một đường tròn. ĐANG CẦN GẤP CẢM ƠN NHIỀU
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tính BFD, ta có thể sử dụng tính chất của các tam giác vuông. Vì BF và FD là hai cạnh vuông góc với nhau, nên ta có thể sử dụng định lý Pythagoras để tính độ dài cạnh BD. Sau đó, ta sẽ tính tỉ lệ giữa cạnh BF và cạnh BD để tìm độ dài cạnh BFD.
b) Để chứng minh FC là phần giác của BPD, ta có thể sử dụng các định lý về góc và đường thẳng. Ta cần chứng minh rằng góc FCB bằng góc BPD. Để làm điều này, ta có thể sử dụng các định lý về góc đồng quy và góc nội tiếp.
c) Để chứng minh ST vuông góc với CF, ta có thể sử dụng các định lý về góc và đường thẳng. Ta cần chứng minh rằng góc STF bằng góc CFB. Để làm điều này, ta có thể sử dụng các định lý về góc đồng quy và góc nội tiếp.
Bạn tự vẽ hình nha:
Gọi giao điểm của DK và AC là I, giao điểm của DK và BE là M
Ta có: góc BDM+góc MBD=90 độ ( vì tam giác BDM vuông ở M)
và góc AEB+ góc MBD=90 độ (vì tam giác ABE vuông ở A)
=> góc BDM= góc AEB
Mà góc BDM= góc ADI ( đối đỉnh) => góc AEB=góc ADI
Xét tam giác DAI và tam giác EAB có:
góc DAI=góc EAB=90 độ
AD=AE
góc ADI=góc AEB (cm)
=> tam giác DAI=tam giác EAB (g.c.g)
=> AI=AB
Mà AB=AC ( tam giác ABC cân tại A)
=> AI=AB => AI=AC => A là trung điểm của IC
Lại có DK và AH cung vuông góc vs BE => DK//AH
Xét tam giác IKC có: AH//DK và A là trung điểm của IC nên H là trung điểm của KC ( t/c đường trung bình)
=> HK=HC
k mk nha
Xét tam giác BKE có: KG và BA là các đường cao => ED cũng là đường cao => ED vuông góc với BK.
Vì tam giác ABC vuông cân, AD = AE => DE //BC và góc ABC = 45 độ
=> BC vuông gocsvowis BK (vì DE vuông góc BK, BC // DE)
=> góc CBK = 90 độ => góc ABK = góc CBA - góc CBA = 90 - 45= 45.
Tam giác BKC có BA vừa là đường cao, vừa là phân giác => BKC cân => AC = AK (đpcm)
a) Ta có: \(\widehat{BCD}+\widehat{BCN}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{BCN}=180^0-\widehat{BCD}=180^0-90^0\)
\(\Leftrightarrow\widehat{BCN}=90^0\)
hay \(\widehat{MCN}=90^0\)
Xét tứ giác MCNF có
\(\widehat{MCN}=90^0\)(cmt)
\(\widehat{FMC}=90^0\)(FM⊥BC)
\(\widehat{FNC}=90^0\)(FN⊥DC)
Do đó: MCNF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ABCD là hình chữ nhật(gt)
nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)
mà AC cắt BD tại O(gt)
nên O là trung điểm chung của AC và BD; AC=BD
Xét ΔACF có
O là trung điểm của AC(cmt)
E là trung điểm của AF(gt)
Do đó: OE là đường trung bình của ΔACF(Định nghĩa đường trung bình của tam giác)
⇒OE//CF và \(OE=\dfrac{CF}{2}\)(Định lí 2 về đường trung bình của tam giác)
hay CF//BD(đpcm)
a. AE = AF:
Δ ABE = Δ ADF vì:
AB = AD ( cạnh hình vuông)
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^)
=> AE = AF
b. Tứ gaíc EGFK là hình thoi
EG // AB và AB // FK => EG // FK (*)
=> \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong)
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF
theo giả thiết: IE = IF (2)
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**)
(*) và (**) => EGFK là hình bình hành
vì AI là trung trực của EF => EG = FG
vậy hình bình hành EGFK là hình thoi.
c. tam giác FIK đồng dạng tam giác FCE
Δ FIK ~ Δ FEC vì:
\(\widehat{F}\)chung
\(\widehat{KIF}=\widehat{ECF}\) = 1v
d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi
gọi cạnh hình vuông là a, ta có:
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi